Classifying Breast Cytological Images using Deep Learning Architectures

Hasnae Zerouaoui, A. Idri
{"title":"Classifying Breast Cytological Images using Deep Learning Architectures","authors":"Hasnae Zerouaoui, A. Idri","doi":"10.5220/0010850000003123","DOIUrl":null,"url":null,"abstract":"Breast cancer (BC) is a leading cause of death among women worldwide. It remains a critical challenge, causing over 10 million deaths globally in 2020. Medical images analysis is the most promising research area since it provides facilities for diagnosing several diseases such as breast cancer. The present paper carries out an empirical evaluation of recent deep Convolutional Neural Network (CNN) architectures for a binary classification of breast cytological images based fined tuned versions of seven deep learning techniques: VGG16, VGG19, DenseNet201, InceptionResNetV2, InceptionV3, ResNet50 and MobileNetV2. The empirical evaluations used: (1) four classification performance criteria (accuracy, recall, precision and F1score), (2) Scott Knott (SK) statistical test to select the best cluster of the outperforming architectures, and (3) borda count voting system to rank the best performing architectures. All the evaluations were over the FNAC dataset which contain 212 images. Results showed the potential of deep learning techniques to classify breast cancer in malignant and benign, therefor the findings of this study recommend the use of MobileNetV2 for the classification of the breast cancer cytological images since it gave the best results with an accuracy of","PeriodicalId":20676,"journal":{"name":"Proceedings of the International Conference on Health Informatics and Medical Application Technology","volume":"90 1","pages":"557-564"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Health Informatics and Medical Application Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0010850000003123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Breast cancer (BC) is a leading cause of death among women worldwide. It remains a critical challenge, causing over 10 million deaths globally in 2020. Medical images analysis is the most promising research area since it provides facilities for diagnosing several diseases such as breast cancer. The present paper carries out an empirical evaluation of recent deep Convolutional Neural Network (CNN) architectures for a binary classification of breast cytological images based fined tuned versions of seven deep learning techniques: VGG16, VGG19, DenseNet201, InceptionResNetV2, InceptionV3, ResNet50 and MobileNetV2. The empirical evaluations used: (1) four classification performance criteria (accuracy, recall, precision and F1score), (2) Scott Knott (SK) statistical test to select the best cluster of the outperforming architectures, and (3) borda count voting system to rank the best performing architectures. All the evaluations were over the FNAC dataset which contain 212 images. Results showed the potential of deep learning techniques to classify breast cancer in malignant and benign, therefor the findings of this study recommend the use of MobileNetV2 for the classification of the breast cancer cytological images since it gave the best results with an accuracy of
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用深度学习架构对乳腺细胞学图像进行分类
乳腺癌(BC)是全世界妇女死亡的主要原因。它仍然是一个严峻的挑战,2020年在全球造成1000多万人死亡。医学影像分析可以诊断乳腺癌等多种疾病,是最有前途的研究领域。本文对基于VGG16、VGG19、DenseNet201、InceptionResNetV2、InceptionV3、ResNet50和MobileNetV2这七种深度学习技术的精细化版本的乳腺细胞学图像二元分类的最新深度卷积神经网络(CNN)架构进行了实证评估。实证评价采用:(1)4个分类性能标准(准确率、召回率、精度和F1score), (2) Scott Knott (SK)统计检验选择表现优异的架构的最佳聚类,(3)borda计数投票系统对表现最佳的架构进行排名。所有的评估都是在包含212张图像的FNAC数据集上进行的。结果显示深度学习技术在乳腺癌的恶性和良性分类方面的潜力,因此本研究的发现推荐使用MobileNetV2进行乳腺癌细胞学图像的分类,因为它给出了最好的结果,准确率为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical Realization and First Insights of the Multicenter Integrative Breast Cancer Registry INTREST Development of Learning System to Support for Passing Steps of Wheelchair On the Problem of Data Availability in Automatic Voice Disorder Detection An NLP-Enhanced Approach to Test Comorbidities Risk Scoring Based on Unstructured Health Data for Hospital Readmissions Prediction A Survey on Technologies Used During out of Hospital Cardiac Arrest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1