IMPROVE-QA: An Interactive Mechanism for RDF Question/Answering Systems

Xinbo Zhang, Lei Zou
{"title":"IMPROVE-QA: An Interactive Mechanism for RDF Question/Answering Systems","authors":"Xinbo Zhang, Lei Zou","doi":"10.1145/3183713.3193555","DOIUrl":null,"url":null,"abstract":"RDF Question/Answering(Q/A) systems can interpret user's question N as SPARQL query Q and return answer set $Q(D)$ over RDF repository D to the user. However, due to the complexity of linking natural phrases with specific RDF items (e.g., entities and predicates), it remains difficult to understand users' questions precisely, hence $Q(D)$ may not meet users' expectation, offering wrong answers and dismissing some correct answers. In this demo, we design an I Interactive Mechanism aiming for PRO motion V ia feedback to Q/A systems (IMPROVE-QA), a whole platform to make existing Q/A systems return more precise answers (denoted as $\\mathcal Q^\\prime (D)$) to users. Based on user's feedback over $Q(D)$, IMPROVE-QA automatically refines the original query Q into a new query graph $\\mathcal Q^\\prime $ with minimum modifications, where $\\mathcal Q^\\prime (D)$ provides more precise answers. We will also demonstrate how IMPROVE-QA can apply the \"lesson'' learned from the user in each query to improve the precision of Q/A systems on subsequent natural language questions.","PeriodicalId":20430,"journal":{"name":"Proceedings of the 2018 International Conference on Management of Data","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183713.3193555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

RDF Question/Answering(Q/A) systems can interpret user's question N as SPARQL query Q and return answer set $Q(D)$ over RDF repository D to the user. However, due to the complexity of linking natural phrases with specific RDF items (e.g., entities and predicates), it remains difficult to understand users' questions precisely, hence $Q(D)$ may not meet users' expectation, offering wrong answers and dismissing some correct answers. In this demo, we design an I Interactive Mechanism aiming for PRO motion V ia feedback to Q/A systems (IMPROVE-QA), a whole platform to make existing Q/A systems return more precise answers (denoted as $\mathcal Q^\prime (D)$) to users. Based on user's feedback over $Q(D)$, IMPROVE-QA automatically refines the original query Q into a new query graph $\mathcal Q^\prime $ with minimum modifications, where $\mathcal Q^\prime (D)$ provides more precise answers. We will also demonstrate how IMPROVE-QA can apply the "lesson'' learned from the user in each query to improve the precision of Q/A systems on subsequent natural language questions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进- qa: RDF问答系统的交互机制
RDF问答(Q/A)系统可以将用户的问题N解释为SPARQL查询Q,并通过RDF存储库D向用户返回答案集Q(D)$。然而,由于将自然短语与特定RDF项(例如实体和谓词)连接起来的复杂性,仍然很难精确地理解用户的问题,因此$Q(D)$可能不符合用户的期望,提供错误的答案并放弃一些正确的答案。在这个演示中,我们设计了一个针对PRO motion V的交互机制,通过对Q/A系统的反馈(IMPROVE-QA),一个完整的平台,使现有的Q/A系统返回更精确的答案(表示为$\mathcal Q^\prime (D)$)给用户。基于用户对$Q(D)$的反馈,improvement - qa自动将原始查询Q提炼为一个新的查询图$\mathcal Q^\prime $,修改最少,其中$\mathcal Q^\prime (D)$提供更精确的答案。我们还将演示improve - qa如何在每个查询中应用从用户那里学到的“教训”,以提高Q/A系统在后续自然语言问题上的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meta-Dataflows: Efficient Exploratory Dataflow Jobs Columnstore and B+ tree - Are Hybrid Physical Designs Important? Demonstration of VerdictDB, the Platform-Independent AQP System Efficient Selection of Geospatial Data on Maps for Interactive and Visualized Exploration Session details: Keynote1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1