{"title":"Influence of ALS-linked M337V mutation on the conformational ensembles of TDP-43<sub>321-340</sub> peptide monomer and dimer.","authors":"Jiyuan Zeng, Yiming Tang, Xuewei Dong, Fangying Li, Guanghong Wei","doi":"10.1002/prot.26482","DOIUrl":null,"url":null,"abstract":"<p><p>The transactive response (TAR) DNA/RNA-binding protein 43 (TDP-43) can self-assemble into both functional stress granules via liquid-liquid phase separation (LLPS) and pathogenic amyloid fibrillary aggregates that are closely linked to amyotrophic lateral sclerosis. Previous experimental studies reported that the low complexity domain (LCD) of TDP-43 plays an essential role in the LLPS and aggregation of the full-length protein, and it alone can also undergo LLPS to form liquid droplets mainly via intermolecular interactions in the 321-340 region. And the ALS-associated M337V mutation impairs LCD's LLPS and facilitates liquid-solid phase transition. However, the underlying atomistic mechanism is not well understood. Herein, as a first step to understand the M337V-caused LLPS disruption of TDP-43 LCD mediated by the 321-340 region and the fibrillization enhancement, we investigated the conformational properties of monomer/dimer of TDP-43<sub>321-340</sub> peptide and its M337V mutant by performing extensive all-atom explicit-solvent replica exchange molecular dynamic simulations. Our simulations demonstrate that M337V mutation alters the residue regions with high helix/β-structure propensities and thus affects the conformational ensembles of both monomer and dimer. M337V mutation inhibits helix formation in the N-terminal Ala-rich region and the C-terminal mutation site region, while facilitating their long β-sheet formation, albeit with a minor impact on the average probability of both helix structure and β-structure. Further analysis of dimer system shows that M337V mutation disrupts inter-molecular helix-helix interactions and W334-W334 π-π stacking interactions which were reported to be important for the LLPS of TDP-43 LCD, whereas enhances the overall peptide residue-residue interactions and weakens peptide-water interactions, which is conducive to peptide fibrillization. This study provides mechanistic insights into the M337V-mutation-induced impairment of phase separation and facilitation of fibril formation of TDP-43 LCD.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26482","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The transactive response (TAR) DNA/RNA-binding protein 43 (TDP-43) can self-assemble into both functional stress granules via liquid-liquid phase separation (LLPS) and pathogenic amyloid fibrillary aggregates that are closely linked to amyotrophic lateral sclerosis. Previous experimental studies reported that the low complexity domain (LCD) of TDP-43 plays an essential role in the LLPS and aggregation of the full-length protein, and it alone can also undergo LLPS to form liquid droplets mainly via intermolecular interactions in the 321-340 region. And the ALS-associated M337V mutation impairs LCD's LLPS and facilitates liquid-solid phase transition. However, the underlying atomistic mechanism is not well understood. Herein, as a first step to understand the M337V-caused LLPS disruption of TDP-43 LCD mediated by the 321-340 region and the fibrillization enhancement, we investigated the conformational properties of monomer/dimer of TDP-43321-340 peptide and its M337V mutant by performing extensive all-atom explicit-solvent replica exchange molecular dynamic simulations. Our simulations demonstrate that M337V mutation alters the residue regions with high helix/β-structure propensities and thus affects the conformational ensembles of both monomer and dimer. M337V mutation inhibits helix formation in the N-terminal Ala-rich region and the C-terminal mutation site region, while facilitating their long β-sheet formation, albeit with a minor impact on the average probability of both helix structure and β-structure. Further analysis of dimer system shows that M337V mutation disrupts inter-molecular helix-helix interactions and W334-W334 π-π stacking interactions which were reported to be important for the LLPS of TDP-43 LCD, whereas enhances the overall peptide residue-residue interactions and weakens peptide-water interactions, which is conducive to peptide fibrillization. This study provides mechanistic insights into the M337V-mutation-induced impairment of phase separation and facilitation of fibril formation of TDP-43 LCD.