{"title":"Improved generalized S-transform deconvolution for non-stationary seismic data","authors":"Chao Sun, D. He, Shen Lijun, Liang Sun","doi":"10.4401/ag-8761","DOIUrl":null,"url":null,"abstract":"Improving the vertical resolution is one of the significant tasks for seismic data processing. Most traditional resolution-enhancement techniques assume that the seismic wavelet is time-invariant. However, the seismic wavelet varies with seismic wave propagation in the subsurface. To solve this issue, a new spectral-modeling method is proposed to extract the time-varying wavelet using improved generalized S-transform (IGST) and higher-order Fourier series. The IGST based on modified time-window function can effectively improve the resolution of the time-frequency (t-f) spectrum. The high-order Fourier series is used to fit on the logarithm t-f spectrum and achieve the high-precision time-varying wavelet. The proposed method is composed of four steps in the implementation. Firstly, the seismic data is decomposed by the IGST and converted to the logarithm t-f domain. Secondly, the time-varying wavelet spectrum is modeled at each time sample using a higher-order Fourier series. Thirdly, the boxcar smoothing method is used to smooth the time-varying wavelet spectrum and extract the time-varying wavelet with Hilbert transform. Finally, using the time-varying wavelet spectrum to spectrally balance seismic data to flatten the seismic response. Synthetic and field data examples demonstrate the feasibility of the proposed method in improving the signal-to-noise ratio and enhancing the vertical resolution.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.4401/ag-8761","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Improving the vertical resolution is one of the significant tasks for seismic data processing. Most traditional resolution-enhancement techniques assume that the seismic wavelet is time-invariant. However, the seismic wavelet varies with seismic wave propagation in the subsurface. To solve this issue, a new spectral-modeling method is proposed to extract the time-varying wavelet using improved generalized S-transform (IGST) and higher-order Fourier series. The IGST based on modified time-window function can effectively improve the resolution of the time-frequency (t-f) spectrum. The high-order Fourier series is used to fit on the logarithm t-f spectrum and achieve the high-precision time-varying wavelet. The proposed method is composed of four steps in the implementation. Firstly, the seismic data is decomposed by the IGST and converted to the logarithm t-f domain. Secondly, the time-varying wavelet spectrum is modeled at each time sample using a higher-order Fourier series. Thirdly, the boxcar smoothing method is used to smooth the time-varying wavelet spectrum and extract the time-varying wavelet with Hilbert transform. Finally, using the time-varying wavelet spectrum to spectrally balance seismic data to flatten the seismic response. Synthetic and field data examples demonstrate the feasibility of the proposed method in improving the signal-to-noise ratio and enhancing the vertical resolution.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.