Improved generalized S-transform deconvolution for non-stationary seismic data

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-07-27 DOI:10.4401/ag-8761
Chao Sun, D. He, Shen Lijun, Liang Sun
{"title":"Improved generalized S-transform deconvolution for non-stationary seismic data","authors":"Chao Sun, D. He, Shen Lijun, Liang Sun","doi":"10.4401/ag-8761","DOIUrl":null,"url":null,"abstract":"Improving the vertical resolution is one of the significant tasks for seismic data processing. Most traditional resolution-enhancement techniques assume that the seismic wavelet is time-invariant. However, the seismic wavelet varies with seismic wave propagation in the subsurface. To solve this issue, a new spectral-modeling method is proposed to extract the time-varying wavelet using improved generalized S-transform (IGST) and higher-order Fourier series. The IGST based on modified time-window function can effectively improve the resolution of the time-frequency (t-f) spectrum. The high-order Fourier series is used to fit on the logarithm t-f spectrum and achieve the high-precision time-varying wavelet. The proposed method is composed of four steps in the implementation. Firstly, the seismic data is decomposed by the IGST and converted to the logarithm t-f domain. Secondly, the time-varying wavelet spectrum is modeled at each time sample using a higher-order Fourier series. Thirdly, the boxcar smoothing method is used to smooth the time-varying wavelet spectrum and extract the time-varying wavelet with Hilbert transform. Finally, using the time-varying wavelet spectrum to spectrally balance seismic data to flatten the seismic response. Synthetic and field data examples demonstrate the feasibility of the proposed method in improving the signal-to-noise ratio and enhancing the vertical resolution.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.4401/ag-8761","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Improving the vertical resolution is one of the significant tasks for seismic data processing. Most traditional resolution-enhancement techniques assume that the seismic wavelet is time-invariant. However, the seismic wavelet varies with seismic wave propagation in the subsurface. To solve this issue, a new spectral-modeling method is proposed to extract the time-varying wavelet using improved generalized S-transform (IGST) and higher-order Fourier series. The IGST based on modified time-window function can effectively improve the resolution of the time-frequency (t-f) spectrum. The high-order Fourier series is used to fit on the logarithm t-f spectrum and achieve the high-precision time-varying wavelet. The proposed method is composed of four steps in the implementation. Firstly, the seismic data is decomposed by the IGST and converted to the logarithm t-f domain. Secondly, the time-varying wavelet spectrum is modeled at each time sample using a higher-order Fourier series. Thirdly, the boxcar smoothing method is used to smooth the time-varying wavelet spectrum and extract the time-varying wavelet with Hilbert transform. Finally, using the time-varying wavelet spectrum to spectrally balance seismic data to flatten the seismic response. Synthetic and field data examples demonstrate the feasibility of the proposed method in improving the signal-to-noise ratio and enhancing the vertical resolution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非平稳地震数据的改进广义s变换反褶积
提高垂向分辨率是地震资料处理的重要任务之一。大多数传统的分辨率增强技术都假定地震小波是时不变的。然而,地震小波随地震波在地下的传播而变化。针对这一问题,提出了一种基于改进广义s变换(IGST)和高阶傅立叶级数的时变小波提取方法。基于修正时窗函数的IGST可以有效地提高时频(t-f)谱的分辨率。采用高阶傅立叶级数拟合对数t-f谱,实现高精度时变小波。该方法在实现过程中分为四个步骤。首先,对地震数据进行IGST分解并转换为对数t-f域;其次,利用高阶傅立叶级数对每个时间样本的时变小波谱进行建模。第三,采用箱车平滑法对时变小波谱进行平滑处理,并用希尔伯特变换提取时变小波;最后,利用时变小波谱对地震资料进行谱平衡,使地震反应平坦化。综合和现场数据实例验证了该方法在提高信噪比和提高垂直分辨率方面的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1