Implementation of Linear and Lagrange Interpolation on Compression of Fibrous Peat Soil Prediction

Badar Said, F. E. Yulianto
{"title":"Implementation of Linear and Lagrange Interpolation on Compression of Fibrous Peat Soil Prediction","authors":"Badar Said, F. E. Yulianto","doi":"10.11591/eecsi.v7.2044","DOIUrl":null,"url":null,"abstract":"Previous studies have predicted the compression of fibrous peat soils using the Gibson & Lo method. But the prediction process is still done manually so it requires quite a long time. Therefore this research implements linear and Lagrange interpolation methods using Matlab software to speed up the prediction process. This study also carried out a comparison of the results of the implementation of the two methods to determine its effectiveness in making predictions. Based on the results of trials and analysis, it can be seen that the prediction of compression of fibrous peat soil using linear interpolation is more effective than using Lagrange interpolation, this can be proven by the smaller average RMSE prediction results using linear interpolation, with a difference in the average value of RMSE 7.7. Besides, prediction testing using Lagrange interpolation requires longer time, because it still does the iteration process as much as laboratory test data.","PeriodicalId":20498,"journal":{"name":"Proceeding of the Electrical Engineering Computer Science and Informatics","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of the Electrical Engineering Computer Science and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eecsi.v7.2044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Previous studies have predicted the compression of fibrous peat soils using the Gibson & Lo method. But the prediction process is still done manually so it requires quite a long time. Therefore this research implements linear and Lagrange interpolation methods using Matlab software to speed up the prediction process. This study also carried out a comparison of the results of the implementation of the two methods to determine its effectiveness in making predictions. Based on the results of trials and analysis, it can be seen that the prediction of compression of fibrous peat soil using linear interpolation is more effective than using Lagrange interpolation, this can be proven by the smaller average RMSE prediction results using linear interpolation, with a difference in the average value of RMSE 7.7. Besides, prediction testing using Lagrange interpolation requires longer time, because it still does the iteration process as much as laboratory test data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性和拉格朗日插值在纤维状泥炭土压缩预测中的实现
以前的研究使用Gibson & Lo方法预测纤维性泥炭土的压缩。但预测过程仍然是手动完成的,因此需要相当长的时间。因此,本研究使用Matlab软件实现线性插值和拉格朗日插值方法,以加快预测过程。本研究还对两种方法的实施结果进行了比较,以确定其在预测中的有效性。通过试验和分析结果可以看出,线性插值法预测纤维状泥炭土压缩比拉格朗日插值法更有效,这可以从线性插值法预测结果的平均RMSE较小得到证明,RMSE平均值相差7.7。此外,使用拉格朗日插值的预测测试需要更长的时间,因为它仍然需要和实验室测试数据一样多的迭代过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimated Profits of Rengginang Lorjuk Madura by Used Comparison of Holt-Winter and Moving Average Water Contents and Monoglycerides as Development Role of Biodiesel Standard in Indonesia for B30 Implementation Image Restoration Effect on DCT High Frequency Removal and Wiener Algorithm for Detecting Facial Key Points RAIKU: E-Commerce App Using Laravel Probabilistic Programming with Piecewise Objective Function for Solving Supplier Selection Problem with Price Discount and Probabilistic Demand
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1