{"title":"Cell Adaptive Fitness and Cancer Evolutionary Dynamics.","authors":"Youcef Derbal","doi":"10.1177/11769351231154679","DOIUrl":null,"url":null,"abstract":"Genome instability of cancer cells translates into increased entropy and lower information processing capacity, leading to metabolic reprograming toward higher energy states, presumed to be aligned with a cancer growth imperative. Dubbed as the cell adaptive fitness, the proposition postulates that the coupling between cell signaling and metabolism constrains cancer evolutionary dynamics along trajectories privileged by the maintenance of metabolic sufficiency for survival. In particular, the conjecture postulates that clonal expansion becomes restricted when genetic alterations induce a sufficiently high level of disorder, that is, high entropy, in the regulatory signaling network, abrogating as a result the ability of cancer cells to successfully replicate, leading to a stage of clonal stagnation. The proposition is analyzed in the context of an in-silico model of tumor evolutionary dynamics to illustrate how cell-inherent adaptive fitness may predictably constrain clonal evolution of tumors, which would have significant implications for the design of adaptive cancer therapies.","PeriodicalId":35418,"journal":{"name":"Cancer Informatics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/77/f7/10.1177_11769351231154679.PMC9969436.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11769351231154679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Genome instability of cancer cells translates into increased entropy and lower information processing capacity, leading to metabolic reprograming toward higher energy states, presumed to be aligned with a cancer growth imperative. Dubbed as the cell adaptive fitness, the proposition postulates that the coupling between cell signaling and metabolism constrains cancer evolutionary dynamics along trajectories privileged by the maintenance of metabolic sufficiency for survival. In particular, the conjecture postulates that clonal expansion becomes restricted when genetic alterations induce a sufficiently high level of disorder, that is, high entropy, in the regulatory signaling network, abrogating as a result the ability of cancer cells to successfully replicate, leading to a stage of clonal stagnation. The proposition is analyzed in the context of an in-silico model of tumor evolutionary dynamics to illustrate how cell-inherent adaptive fitness may predictably constrain clonal evolution of tumors, which would have significant implications for the design of adaptive cancer therapies.
期刊介绍:
The field of cancer research relies on advances in many other disciplines, including omics technology, mass spectrometry, radio imaging, computer science, and biostatistics. Cancer Informatics provides open access to peer-reviewed high-quality manuscripts reporting bioinformatics analysis of molecular genetics and/or clinical data pertaining to cancer, emphasizing the use of machine learning, artificial intelligence, statistical algorithms, advanced imaging techniques, data visualization, and high-throughput technologies. As the leading journal dedicated exclusively to the report of the use of computational methods in cancer research and practice, Cancer Informatics leverages methodological improvements in systems biology, genomics, proteomics, metabolomics, and molecular biochemistry into the fields of cancer detection, treatment, classification, risk-prediction, prevention, outcome, and modeling.