{"title":"Research on soil moisture content combination prediction model based on ARIMA and BP neural networks","authors":"Guowei Wang, Yingxin Han, Jing Chang","doi":"10.1002/adc2.139","DOIUrl":null,"url":null,"abstract":"<p>Predicting soil moisture accurately is the precondition of realizing accurate irrigation and improving the utilization rate of water resource and the necessary step of developing water-saving agriculture, which can alleviate the water shortage in our agricultural effectively. In order to further improve the accuracy of soil water content prediction, a combined soil water content prediction model based on Autoregressive moving average model (ARIMA model) and back propagation neural network (BP neural network) neural network is proposed. The model considers the linear and nonlinear characteristics of soil water content data, combines them according to the characteristics of the model itself, gives full play to the advantages of ARIMA model and BP neural network. At the same time, two data smoothing methods were used to establish the ARIMA model, and the adaptive moment estimation algorithm (Adam algorithm) and mind evolutionary algorithm (MEA) optimization BP neural network model were used to propose an improved combined prediction model to predict soil water content data. The experimental results show that the average relative error of the improved combinatorial prediction model is 1.51%, which is 4.18%, 0.95% and 3.1% lower than the combinatorial prediction model, BP neural network model and ARIMA model, respectively, and the overall prediction effect is better, which can be used to save agricultural water and provide a strong basis for the development of water-saving agriculture in China. At the same time, it can also ensure that crop production is increased and the purpose of national food security is guaranteed.</p>","PeriodicalId":100030,"journal":{"name":"Advanced Control for Applications","volume":"6 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.139","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Control for Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adc2.139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting soil moisture accurately is the precondition of realizing accurate irrigation and improving the utilization rate of water resource and the necessary step of developing water-saving agriculture, which can alleviate the water shortage in our agricultural effectively. In order to further improve the accuracy of soil water content prediction, a combined soil water content prediction model based on Autoregressive moving average model (ARIMA model) and back propagation neural network (BP neural network) neural network is proposed. The model considers the linear and nonlinear characteristics of soil water content data, combines them according to the characteristics of the model itself, gives full play to the advantages of ARIMA model and BP neural network. At the same time, two data smoothing methods were used to establish the ARIMA model, and the adaptive moment estimation algorithm (Adam algorithm) and mind evolutionary algorithm (MEA) optimization BP neural network model were used to propose an improved combined prediction model to predict soil water content data. The experimental results show that the average relative error of the improved combinatorial prediction model is 1.51%, which is 4.18%, 0.95% and 3.1% lower than the combinatorial prediction model, BP neural network model and ARIMA model, respectively, and the overall prediction effect is better, which can be used to save agricultural water and provide a strong basis for the development of water-saving agriculture in China. At the same time, it can also ensure that crop production is increased and the purpose of national food security is guaranteed.