{"title":"Stability of pinned-rotationally restrained arches","authors":"L. Peter","doi":"10.2298/tam200402010k","DOIUrl":null,"url":null,"abstract":"The article aims to find the buckling loads for pinned?rotationally restrained shallow circular arches in terms of the rotational end stiffness, geometry and material distribution. The loading is a concentrated vertical force placed at the crown. A geometrically nonlinear model is presented which relates not only the axial force but also the bending moment to the membrane strain. The nonlinear load-strain relationship is established between the strain and load parameters. This equation is then solved and evaluated analytically. It turns out that the stiffness of the end-restraint has, in general, a significant effect on the lowest buckling load. At the same time, some geometries are not affected by this. As the stiffness becomes zero, the arch is pinned-pinned and as the stiffness tends to infinity, the arch behaves as if it were pinned-fixed and has the best load-bearing abilities.","PeriodicalId":44059,"journal":{"name":"Theoretical and Applied Mechanics","volume":"29 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/tam200402010k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1
Abstract
The article aims to find the buckling loads for pinned?rotationally restrained shallow circular arches in terms of the rotational end stiffness, geometry and material distribution. The loading is a concentrated vertical force placed at the crown. A geometrically nonlinear model is presented which relates not only the axial force but also the bending moment to the membrane strain. The nonlinear load-strain relationship is established between the strain and load parameters. This equation is then solved and evaluated analytically. It turns out that the stiffness of the end-restraint has, in general, a significant effect on the lowest buckling load. At the same time, some geometries are not affected by this. As the stiffness becomes zero, the arch is pinned-pinned and as the stiffness tends to infinity, the arch behaves as if it were pinned-fixed and has the best load-bearing abilities.
期刊介绍:
Theoretical and Applied Mechanics (TAM) invites submission of original scholarly work in all fields of theoretical and applied mechanics. TAM features selected high quality research articles that represent the broad spectrum of interest in mechanics.