Optimization Model for Selecting Temporary Hospital Locations During COVID-19 Pandemic

IF 2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Cmc-computers Materials & Continua Pub Date : 2022-01-01 DOI:10.32604/cmc.2022.019470
Chia-Nan Wang, C. Chou, H. Hsu, Viet Tinh Nguyen
{"title":"Optimization Model for Selecting Temporary Hospital Locations During COVID-19 Pandemic","authors":"Chia-Nan Wang, C. Chou, H. Hsu, Viet Tinh Nguyen","doi":"10.32604/cmc.2022.019470","DOIUrl":null,"url":null,"abstract":"The two main approaches that countries are using to ease the strain on healthcare infrastructure is building temporary hospitals that are specialized in treating COVID-19 patients and promoting preventive measures. As such, the selection of the optimal location for a temporary hospital and the calculation of the prioritization of preventive measures are two of the most critical decisions during the pandemic, especially in densely populated areas where the risk of transmission of the virus is highest. If the location selection process or the prioritization of measures is poor, healthcare workers and patients can be harmed, and unnecessary costs may come into play. In this study, a decision support framework using a fuzzy analytic hierarchy process (FAHP) and a weighted aggregated sum product assessment model are proposed for selecting the location of a temporary hospital, and a FAHP model is proposed for calculating the prioritization of preventive measures against COVID-19. A case study is performed for Ho Chi Minh City using the proposed decision-making framework. The contribution of this work is to propose a multiple criteria decision-making model in a fuzzy environment for ranking potential locations for building temporary hospitals during the COVID-19 pandemic. The results of the study can be used to assist decision-makers, such as government authorities and infectious disease experts, in dealing with the current pandemic as well as other diseases in the future. With the entire world facing the global pandemic of COVID-19, many scientists have applied research achievements in practice to help decision-makers make accurate decisions to prevent the pandemic. As the number of cases increases exponentially, it is crucial that government authorities and infectious disease experts make optimal decisions while considering multiple quantitative and qualitative criteria. As such, the proposed approach can also be applied to support complex decision-making processes in a fuzzy environment in different countries. © 2021 Tech Science Press. All rights reserved.","PeriodicalId":10440,"journal":{"name":"Cmc-computers Materials & Continua","volume":"112 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cmc-computers Materials & Continua","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32604/cmc.2022.019470","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 5

Abstract

The two main approaches that countries are using to ease the strain on healthcare infrastructure is building temporary hospitals that are specialized in treating COVID-19 patients and promoting preventive measures. As such, the selection of the optimal location for a temporary hospital and the calculation of the prioritization of preventive measures are two of the most critical decisions during the pandemic, especially in densely populated areas where the risk of transmission of the virus is highest. If the location selection process or the prioritization of measures is poor, healthcare workers and patients can be harmed, and unnecessary costs may come into play. In this study, a decision support framework using a fuzzy analytic hierarchy process (FAHP) and a weighted aggregated sum product assessment model are proposed for selecting the location of a temporary hospital, and a FAHP model is proposed for calculating the prioritization of preventive measures against COVID-19. A case study is performed for Ho Chi Minh City using the proposed decision-making framework. The contribution of this work is to propose a multiple criteria decision-making model in a fuzzy environment for ranking potential locations for building temporary hospitals during the COVID-19 pandemic. The results of the study can be used to assist decision-makers, such as government authorities and infectious disease experts, in dealing with the current pandemic as well as other diseases in the future. With the entire world facing the global pandemic of COVID-19, many scientists have applied research achievements in practice to help decision-makers make accurate decisions to prevent the pandemic. As the number of cases increases exponentially, it is crucial that government authorities and infectious disease experts make optimal decisions while considering multiple quantitative and qualitative criteria. As such, the proposed approach can also be applied to support complex decision-making processes in a fuzzy environment in different countries. © 2021 Tech Science Press. All rights reserved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型冠状病毒大流行期间临时医院选址优化模型
各国缓解医疗基础设施压力的两种主要方法是建立专门治疗COVID-19患者的临时医院和促进预防措施。因此,为临时医院选择最佳地点和计算预防措施的优先次序是大流行期间最关键的两项决定,特别是在病毒传播风险最高的人口稠密地区。如果地点选择过程或措施的优先顺序不佳,可能会伤害医护人员和患者,并可能产生不必要的费用。本文提出了基于模糊层次分析法(FAHP)和加权总和产品评价模型的临时医院选址决策支持框架,以及基于FAHP模型的新冠肺炎预防措施优先级计算。使用建议的决策框架对胡志明市进行了案例研究。本工作的贡献在于提出了一种模糊环境下的多准则决策模型,用于对新冠肺炎大流行期间临时医院建设的潜在地点进行排序。这项研究的结果可用于协助决策者,如政府当局和传染病专家,处理当前的大流行以及未来的其他疾病。在全球面临新冠肺炎全球大流行的背景下,许多科学家将研究成果应用于实践,帮助决策者做出准确的决策,以预防大流行。随着病例数量呈指数增长,政府当局和传染病专家在考虑多种定量和定性标准的情况下做出最佳决策至关重要。因此,建议的方法也可用于在不同国家的模糊环境中支持复杂的决策过程。©2021科技科学出版社。版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cmc-computers Materials & Continua
Cmc-computers Materials & Continua 工程技术-材料科学:综合
CiteScore
5.30
自引率
19.40%
发文量
345
审稿时长
1 months
期刊介绍: This journal publishes original research papers in the areas of computer networks, artificial intelligence, big data management, software engineering, multimedia, cyber security, internet of things, materials genome, integrated materials science, data analysis, modeling, and engineering of designing and manufacturing of modern functional and multifunctional materials. Novel high performance computing methods, big data analysis, and artificial intelligence that advance material technologies are especially welcome.
期刊最新文献
Estimating Fuel-Efficient Air Plane Trajectories Using Machine Learning 2D Finite Element Analysis of Asynchronous Machine Influenced Under Power Quality Perturbations Multi-Attribute Selection Procedures Based on Regret and Rejoice for the Decision-Maker Disease Diagnosis System Using IoT Empowered with Fuzzy Inference System Automated Grading of Breast Cancer Histopathology Images Using Multilayered Autoencoder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1