Two-Stage Adaptive Classification Cloud Workload Prediction Based on Neural Networks

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS International Journal of Grid and High Performance Computing Pub Date : 2019-04-01 DOI:10.4018/IJGHPC.2019040101
Lei Li, Yilin Wang, Lianwen Jin, Xin Zhang, Huiping Qin
{"title":"Two-Stage Adaptive Classification Cloud Workload Prediction Based on Neural Networks","authors":"Lei Li, Yilin Wang, Lianwen Jin, Xin Zhang, Huiping Qin","doi":"10.4018/IJGHPC.2019040101","DOIUrl":null,"url":null,"abstract":"Workload prediction is important for automatic scaling of resource management, and a high accuracy of workload prediction can reduce the cost and improve the resource utilization in the cloud. But, the task request is usually random mutation, so it is difficult to achieve more accurate prediction result for single models. Thus, to improve the prediction result, the authors proposed a novel two-stage workload prediction model based on artificial neural networks (ANNs), which is composed of one classification model and two prediction models. On the basis of the first-order gradient feature, the model can categorize the workload into two classes adaptively. Then, it can predict the workload by using the corresponding prediction neural network models according to the classification results. The experiment results demonstrate that the suggested model can achieve more accurate workload prediction compared with other models.","PeriodicalId":43565,"journal":{"name":"International Journal of Grid and High Performance Computing","volume":"1 1","pages":"1-23"},"PeriodicalIF":0.6000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJGHPC.2019040101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 5

Abstract

Workload prediction is important for automatic scaling of resource management, and a high accuracy of workload prediction can reduce the cost and improve the resource utilization in the cloud. But, the task request is usually random mutation, so it is difficult to achieve more accurate prediction result for single models. Thus, to improve the prediction result, the authors proposed a novel two-stage workload prediction model based on artificial neural networks (ANNs), which is composed of one classification model and two prediction models. On the basis of the first-order gradient feature, the model can categorize the workload into two classes adaptively. Then, it can predict the workload by using the corresponding prediction neural network models according to the classification results. The experiment results demonstrate that the suggested model can achieve more accurate workload prediction compared with other models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的两阶段自适应分类云工作负荷预测
工作负载预测对于资源管理的自动扩展具有重要意义,高准确度的工作负载预测可以降低成本,提高云中资源的利用率。但是,任务请求通常是随机突变的,因此单个模型很难获得更准确的预测结果。为此,作者提出了一种基于人工神经网络(ann)的两阶段工作量预测模型,该模型由一个分类模型和两个预测模型组成。基于一阶梯度特征,该模型可以自适应地将工作负载分为两类。然后,根据分类结果,利用相应的预测神经网络模型对工作量进行预测。实验结果表明,与其他模型相比,该模型可以实现更准确的工作量预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
24
期刊最新文献
A Potent View on the Effects of E-Learning Pre-Cutoff Value Calculation Method for Accelerating Metric Space Outlier Detection A Security Method for Cloud Storage Using Data Classification An Energy-Efficient Multi-Channel Design for Distributed Wireless Sensor Networks On Allocation Algorithms for Manycore Systems With Network on Chip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1