Detection of Diseases in Tomato Plant using Machine Learning

Anshul Sharma, Ashish Chandak, Aryan Khandelwal, Raunak Gandhi
{"title":"Detection of Diseases in Tomato Plant using Machine Learning","authors":"Anshul Sharma, Ashish Chandak, Aryan Khandelwal, Raunak Gandhi","doi":"10.47164/ijngc.v13i5.941","DOIUrl":null,"url":null,"abstract":"A major part of the Indian economy relies on agriculture, thus identification of any diseased crop in the initial phase is very important as these diseases cause a significant drop in agricultural production and also affect the economy of the country. Tomato crops are susceptible to various diseases which may be caused due to transmission of diseases through Air or Soil. We have tried to automate the procedure of detection of diseases in the Tomato Plant by studying several attributes related to the leaf of the plant. Using various machine learning algorithms such as Support Vector Machine (SVM), Convolutional Neural Network (CNN), ResNet, and InceptionV3 we have trained the model, and based on the results obtained we have evaluated and compared the performance of these algorithms on different features set. For the dataset we had 10 classes (healthy and other unhealthy classes) having a total of 18,450 images for the training of the models. After implementing all of the algorithms and comparing their results we found that the ResNet was most appropriate for extracting distinct attributes from images. The trained models can be used to detect diseases in Tomato Plant timely and automatically.","PeriodicalId":42021,"journal":{"name":"International Journal of Next-Generation Computing","volume":"51 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Next-Generation Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47164/ijngc.v13i5.941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A major part of the Indian economy relies on agriculture, thus identification of any diseased crop in the initial phase is very important as these diseases cause a significant drop in agricultural production and also affect the economy of the country. Tomato crops are susceptible to various diseases which may be caused due to transmission of diseases through Air or Soil. We have tried to automate the procedure of detection of diseases in the Tomato Plant by studying several attributes related to the leaf of the plant. Using various machine learning algorithms such as Support Vector Machine (SVM), Convolutional Neural Network (CNN), ResNet, and InceptionV3 we have trained the model, and based on the results obtained we have evaluated and compared the performance of these algorithms on different features set. For the dataset we had 10 classes (healthy and other unhealthy classes) having a total of 18,450 images for the training of the models. After implementing all of the algorithms and comparing their results we found that the ResNet was most appropriate for extracting distinct attributes from images. The trained models can be used to detect diseases in Tomato Plant timely and automatically.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的番茄病害检测
印度经济的主要部分依赖于农业,因此在初始阶段识别任何患病作物是非常重要的,因为这些疾病会导致农业生产大幅下降,也会影响该国的经济。番茄作物易受各种疾病的影响,这些疾病可能是通过空气或土壤传播的。我们试图通过研究番茄叶片相关的几个属性来实现番茄病害检测过程的自动化。使用各种机器学习算法,如支持向量机(SVM)、卷积神经网络(CNN)、ResNet和InceptionV3,我们对模型进行了训练,并根据获得的结果评估和比较了这些算法在不同特征集上的性能。对于数据集,我们有10个类(健康类和其他不健康类),总共有18450张图像用于模型的训练。在实现了所有算法并比较了它们的结果后,我们发现ResNet最适合从图像中提取不同的属性。所建立的模型可用于番茄植株病害的实时自动检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Next-Generation Computing
International Journal of Next-Generation Computing COMPUTER SCIENCE, THEORY & METHODS-
自引率
66.70%
发文量
60
期刊最新文献
Integrating Smartphone Sensor Technology to Enhance Fine Motor and Working Memory Skills in Pediatric Obesity: A Gamified Approach Deep Learning based Semantic Segmentation for Buildings Detection from Remote Sensing Images Machine Learning-assisted Distance Based Residual Energy Aware Clustering Algorithm for Energy Efficient Information Dissemination in Urban VANETs High Utility Itemset Extraction using PSO with Online Control Parameter Calibration Alzheimer’s Disease Classification using Feature Enhanced Deep Convolutional Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1