G. De Gaetano , D. Mundo , C. Maletta , M. Kroiss , L. Cremers
{"title":"Multi-objective optimization of a vehicle body by combining gradient-based methods and vehicle concept modelling","authors":"G. De Gaetano , D. Mundo , C. Maletta , M. Kroiss , L. Cremers","doi":"10.1016/j.csmssp.2015.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>In the automotive field, size optimization procedures can be combined with concept modelling approaches, in order to design a vehicle Body-In-White (BIW) model with optimal static and dynamic performances already in the early design stages. However, this specific optimization problem, with hundreds of design variables, limited design space and often conflicting objectives, makes the choice of the appropriate optimization method really difficult. The aim of this paper is to show an industrial case study, where two different implementations of the classical gradient-based (GB) method are used in combination with a technique for vehicle body concept modelling to achieve a multi-objective BIW optimization of a passenger car.</p></div>","PeriodicalId":100220,"journal":{"name":"Case Studies in Mechanical Systems and Signal Processing","volume":"1 ","pages":"Pages 1-7"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.csmssp.2015.06.002","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Mechanical Systems and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2351988615300026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
In the automotive field, size optimization procedures can be combined with concept modelling approaches, in order to design a vehicle Body-In-White (BIW) model with optimal static and dynamic performances already in the early design stages. However, this specific optimization problem, with hundreds of design variables, limited design space and often conflicting objectives, makes the choice of the appropriate optimization method really difficult. The aim of this paper is to show an industrial case study, where two different implementations of the classical gradient-based (GB) method are used in combination with a technique for vehicle body concept modelling to achieve a multi-objective BIW optimization of a passenger car.