{"title":"Rock Joint Roughness Measurement and Quantification—A Review of the Current Status","authors":"P. Kulatilake, Mawuko Luke Yaw Ankah","doi":"10.3390/geotechnics3020008","DOIUrl":null,"url":null,"abstract":"This paper provides a review of the present status of the topic dealt with. The contact and non-contact methods used for rock joint roughness measurement are summarized including their salient features, advantages, and disadvantages. A critical review is given of the empirical, statistical, and fractal-based methods used for rock joint roughness quantification identifying their salient features, shortcomings, and strong attributes. The surface topography of rough rock joints is highly erratic. Fractional geometry is better suited than Euclidean geometry in representing highly erratic rock joint surfaces. The influence of non-stationarity on accurate quantification of roughness is discussed. The existence of heterogeneity of natural rock joint roughness and its effect on computed roughness parameters are well illustrated. The controversial findings that have been appearing in the literature on roughness scale effects during the last 40 years have resulted from neglecting the effect of roughness heterogeneity on scale effects. The roughness heterogeneity controls the rock joint roughness scale effect, and it can be either negative, positive, or no scale effect depending on the type and level of the roughness heterogeneity of the rock joint surface. The importance of consideration of the existence of possible anisotropy in the quantification of roughness is well illustrated. The indices available to quantify the level of anisotropy are given. Effects of sampling interval and measurement resolution on the accurate quantification of roughness are discussed. A comparison of results obtained by using different quantification methods is discussed. A few recommendations are given for future research to address the shortcomings that exist on the topic dealt with in the paper.","PeriodicalId":11823,"journal":{"name":"Environmental geotechnics","volume":"276 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental geotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/geotechnics3020008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 3
Abstract
This paper provides a review of the present status of the topic dealt with. The contact and non-contact methods used for rock joint roughness measurement are summarized including their salient features, advantages, and disadvantages. A critical review is given of the empirical, statistical, and fractal-based methods used for rock joint roughness quantification identifying their salient features, shortcomings, and strong attributes. The surface topography of rough rock joints is highly erratic. Fractional geometry is better suited than Euclidean geometry in representing highly erratic rock joint surfaces. The influence of non-stationarity on accurate quantification of roughness is discussed. The existence of heterogeneity of natural rock joint roughness and its effect on computed roughness parameters are well illustrated. The controversial findings that have been appearing in the literature on roughness scale effects during the last 40 years have resulted from neglecting the effect of roughness heterogeneity on scale effects. The roughness heterogeneity controls the rock joint roughness scale effect, and it can be either negative, positive, or no scale effect depending on the type and level of the roughness heterogeneity of the rock joint surface. The importance of consideration of the existence of possible anisotropy in the quantification of roughness is well illustrated. The indices available to quantify the level of anisotropy are given. Effects of sampling interval and measurement resolution on the accurate quantification of roughness are discussed. A comparison of results obtained by using different quantification methods is discussed. A few recommendations are given for future research to address the shortcomings that exist on the topic dealt with in the paper.
期刊介绍:
In 21st century living, engineers and researchers need to deal with growing problems related to climate change, oil and water storage, handling, storage and disposal of toxic and hazardous wastes, remediation of contaminated sites, sustainable development and energy derived from the ground.
Environmental Geotechnics aims to disseminate knowledge and provides a fresh perspective regarding the basic concepts, theory, techniques and field applicability of innovative testing and analysis methodologies and engineering practices in geoenvironmental engineering.
The journal''s Editor in Chief is a Member of the Committee on Publication Ethics.
All relevant papers are carefully considered, vetted by a distinguished team of international experts and rapidly published. Full research papers, short communications and comprehensive review articles are published under the following broad subject categories:
geochemistry and geohydrology,
soil and rock physics, biological processes in soil, soil-atmosphere interaction,
electrical, electromagnetic and thermal characteristics of porous media,
waste management, utilization of wastes, multiphase science, landslide wasting,
soil and water conservation,
sensor development and applications,
the impact of climatic changes on geoenvironmental, geothermal/ground-source energy, carbon sequestration, oil and gas extraction techniques,
uncertainty, reliability and risk, monitoring and forensic geotechnics.