Visual Analytics in Digital Pathology: Challenges and Opportunities

A. Corvó, M. A. Westenberg, R. Wimberger-Friedl, Stephan Fromme, Michel A. Peeters, M. A. Driel, J. V. Wijk
{"title":"Visual Analytics in Digital Pathology: Challenges and Opportunities","authors":"A. Corvó, M. A. Westenberg, R. Wimberger-Friedl, Stephan Fromme, Michel A. Peeters, M. A. Driel, J. V. Wijk","doi":"10.2312/VCBM.20191240","DOIUrl":null,"url":null,"abstract":"The advances in high-throughput digitization, digital pathology systems, and quantitative image analysis opened new horizons in pathology. The diagnostic work of the pathologists and their role is likely to be augmented with computer-assistance and more quantitative information at hand. The recent success of artificial intelligence (AI) and computer vision methods demonstrated that in the coming years machines will support pathologists in typically tedious and highly subjective tasks and also in better patient stratification. In spite of clear future improvements in the diagnostic workflow, questions on how to effectively support the pathologists and how to integrate current data sources and quantitative information still persist. In this context, Visual Analytics (VA) - as the discipline that aids users to solve complex problems with an interactive and visual approach - can play a vital role to support the cognitive skills of pathologists and the large volumes of data available. To identify the main opportunities to employ VA in digital pathology systems, we conducted a survey with 20 pathologists to characterize the diagnostic practice and needs from a user perspective. From our findings, we discuss how VA can leverage quantitative image data to empower pathologists with new advanced digital pathology systems.","PeriodicalId":88872,"journal":{"name":"Eurographics Workshop on Visual Computing for Biomedicine","volume":"1 1","pages":"129-143"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Workshop on Visual Computing for Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/VCBM.20191240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The advances in high-throughput digitization, digital pathology systems, and quantitative image analysis opened new horizons in pathology. The diagnostic work of the pathologists and their role is likely to be augmented with computer-assistance and more quantitative information at hand. The recent success of artificial intelligence (AI) and computer vision methods demonstrated that in the coming years machines will support pathologists in typically tedious and highly subjective tasks and also in better patient stratification. In spite of clear future improvements in the diagnostic workflow, questions on how to effectively support the pathologists and how to integrate current data sources and quantitative information still persist. In this context, Visual Analytics (VA) - as the discipline that aids users to solve complex problems with an interactive and visual approach - can play a vital role to support the cognitive skills of pathologists and the large volumes of data available. To identify the main opportunities to employ VA in digital pathology systems, we conducted a survey with 20 pathologists to characterize the diagnostic practice and needs from a user perspective. From our findings, we discuss how VA can leverage quantitative image data to empower pathologists with new advanced digital pathology systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数字病理学中的视觉分析:挑战与机遇
高通量数字化、数字病理系统和定量图像分析的进步为病理学开辟了新的视野。病理学家的诊断工作和他们的作用可能会随着计算机辅助和更多的定量信息而得到加强。最近人工智能(AI)和计算机视觉方法的成功表明,在未来几年,机器将支持病理学家完成通常繁琐且高度主观的任务,并更好地对患者进行分层。尽管诊断工作流程在未来有明显的改进,但关于如何有效地支持病理学家以及如何整合当前数据源和定量信息的问题仍然存在。在这种情况下,视觉分析(VA)作为一门帮助用户用交互式和可视化方法解决复杂问题的学科,可以在支持病理学家的认知技能和大量可用数据方面发挥至关重要的作用。为了确定在数字病理系统中使用虚拟影像的主要机会,我们对20名病理学家进行了一项调查,以从用户的角度描述诊断实践和需求。根据我们的研究结果,我们讨论了VA如何利用定量图像数据为病理学家提供新的先进数字病理系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Analytics to Assess Deep Learning Models for Cross-Modal Brain Tumor Segmentation Distance Visualizations for Vascular Structures in Desktop and VR: Overview and Implementation Is there a Tornado in Alex's Blood Flow? A Case Study for Narrative Medical Visualization HistoContours: a Framework for Visual Annotation of Histopathology Whole Slide Images Predicting, Analyzing and Communicating Outcomes of COVID-19 Hospitalizations with Medical Images and Clinical Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1