Community Accessible Datastore of High-Throughput Calculations: Experiences from the Materials Project

D. Gunter, S. Cholia, Anubhav Jain, M. Kocher, K. Persson, L. Ramakrishnan, S. Ong, G. Ceder
{"title":"Community Accessible Datastore of High-Throughput Calculations: Experiences from the Materials Project","authors":"D. Gunter, S. Cholia, Anubhav Jain, M. Kocher, K. Persson, L. Ramakrishnan, S. Ong, G. Ceder","doi":"10.1109/SC.COMPANION.2012.150","DOIUrl":null,"url":null,"abstract":"Efforts such as the Human Genome Project provided a dramatic example of opening scientific datasets to the community. Making high quality scientific data accessible through an online database allows scientists around the world to multiply the value of that data through scientific innovations. Similarly, the goal of the Materials Project is to calculate physical properties of all known inorganic materials and make this data freely available, with the goal of accelerating to invention of better materials. However, the complexity of scientific data, and the complexity of the simulations needed to generate and analyze it, pose challenges to current software ecosystem. In this paper, we describe the approach we used in the Materials Project to overcome these challenges and create and disseminate a high quality database of materials properties computed by solving the basic laws of physics. Our infrastructure requires a novel combination of highthroughput approaches with broadly applicable and scalable approaches to data storage and dissemination.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"23 1","pages":"1244-1251"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.COMPANION.2012.150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Efforts such as the Human Genome Project provided a dramatic example of opening scientific datasets to the community. Making high quality scientific data accessible through an online database allows scientists around the world to multiply the value of that data through scientific innovations. Similarly, the goal of the Materials Project is to calculate physical properties of all known inorganic materials and make this data freely available, with the goal of accelerating to invention of better materials. However, the complexity of scientific data, and the complexity of the simulations needed to generate and analyze it, pose challenges to current software ecosystem. In this paper, we describe the approach we used in the Materials Project to overcome these challenges and create and disseminate a high quality database of materials properties computed by solving the basic laws of physics. Our infrastructure requires a novel combination of highthroughput approaches with broadly applicable and scalable approaches to data storage and dissemination.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社区可访问的高通量计算数据存储:来自材料项目的经验
人类基因组计划等努力为向社会开放科学数据集提供了一个引人注目的例子。通过在线数据库提供高质量的科学数据,使世界各地的科学家能够通过科学创新使这些数据的价值成倍增加。同样,材料项目的目标是计算所有已知无机材料的物理性质,并使这些数据免费提供,以加速发明更好的材料。然而,科学数据的复杂性,以及生成和分析这些数据所需的模拟的复杂性,给当前的软件生态系统带来了挑战。在本文中,我们描述了我们在材料项目中使用的方法,以克服这些挑战,并通过解决基本物理定律来创建和传播高质量的材料属性数据库。我们的基础设施需要高吞吐量方法与广泛适用和可扩展的数据存储和传播方法的新颖组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Performance Computing and Networking: Select Proceedings of CHSN 2021 High Quality Real-Time Image-to-Mesh Conversion for Finite Element Simulations Abstract: Automatically Adapting Programs for Mixed-Precision Floating-Point Computation Poster: Memory-Conscious Collective I/O for Extreme-Scale HPC Systems Abstract: Virtual Machine Packing Algorithms for Lower Power Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1