Deep learning for processing and analysis of remote sensing big data: a technical review

IF 4.2 3区 地球科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Big Earth Data Pub Date : 2021-08-30 DOI:10.1080/20964471.2021.1964879
Xin Zhang, Ya’nan Zhou, Jiancheng Luo
{"title":"Deep learning for processing and analysis of remote sensing big data: a technical review","authors":"Xin Zhang, Ya’nan Zhou, Jiancheng Luo","doi":"10.1080/20964471.2021.1964879","DOIUrl":null,"url":null,"abstract":"ABSTRACT In recent years, the rapid development of Earth observation technology has produced an increasing growth in remote sensing big data, posing serious challenges for effective and efficient processing and analysis. Meanwhile, there has been a massive rise in deep-learning-based algorithms for remote sensing tasks, providing a large opportunity for remote sensing big data. In this article, we initially summarize the features of remote sensing big data. Subsequently, following the pipeline of remote sensing tasks, a detailed and technical review is conducted to discuss how deep learning has been applied to the processing and analysis of remote sensing data, including geometric and radiometric processing, cloud masking, data fusion, object detection and extraction, land-use/cover classification, change detection and multitemporal analysis. Finally, we discussed technical challenges and concluded directions for future research in deep-learning-based applications for remote sensing big data.","PeriodicalId":8765,"journal":{"name":"Big Earth Data","volume":"52 1","pages":"527 - 560"},"PeriodicalIF":4.2000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Earth Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/20964471.2021.1964879","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 23

Abstract

ABSTRACT In recent years, the rapid development of Earth observation technology has produced an increasing growth in remote sensing big data, posing serious challenges for effective and efficient processing and analysis. Meanwhile, there has been a massive rise in deep-learning-based algorithms for remote sensing tasks, providing a large opportunity for remote sensing big data. In this article, we initially summarize the features of remote sensing big data. Subsequently, following the pipeline of remote sensing tasks, a detailed and technical review is conducted to discuss how deep learning has been applied to the processing and analysis of remote sensing data, including geometric and radiometric processing, cloud masking, data fusion, object detection and extraction, land-use/cover classification, change detection and multitemporal analysis. Finally, we discussed technical challenges and concluded directions for future research in deep-learning-based applications for remote sensing big data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向遥感大数据处理与分析的深度学习技术综述
近年来,随着对地观测技术的快速发展,遥感大数据量日益增长,对有效、高效的处理和分析提出了严峻的挑战。与此同时,基于深度学习的遥感任务算法大量增加,为遥感大数据提供了巨大的机会。本文初步总结了遥感大数据的特点。随后,根据遥感任务的流程,进行了详细的技术回顾,讨论了深度学习如何应用于遥感数据的处理和分析,包括几何和辐射处理、云掩蔽、数据融合、目标检测和提取、土地利用/覆盖分类、变化检测和多时相分析。最后,讨论了基于深度学习的遥感大数据应用的技术挑战和未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Big Earth Data
Big Earth Data Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
7.40
自引率
10.00%
发文量
60
审稿时长
10 weeks
期刊最新文献
A dataset of lake level changes in China between 2002 and 2023 using multi-altimeter data The first 10 m resolution thermokarst lake and pond dataset for the Lena Basin in the 2020 thawing season A high-resolution dataset for lower atmospheric process studies over the Tibetan Plateau from 1981 to 2020 An application of 1D convolution and deep learning to remote sensing modelling of Secchi depth in the northern Adriatic Sea A mediation system for continuous spatial queries on a unified schema using Apache Spark
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1