S. Boufass, A. Hader, M. Tanasehte, H. Sbiaai, I. Achik, Y. Boughaleb
{"title":"Modelling of composite materials energy by fiber bundle model","authors":"S. Boufass, A. Hader, M. Tanasehte, H. Sbiaai, I. Achik, Y. Boughaleb","doi":"10.1051/epjap/2020200179","DOIUrl":null,"url":null,"abstract":"In this paper, the fiber energy in composite materials, subject to an external constant load, is studied. The investigation is done in the framework of fiber bundle model with randomly oriented fibers. The charge transfer is done only between neighboring close fibers according to the local load sharing. During the breaking process, the fibers expand, increasing their elastic energy, but when the fiber breaks, it loses its link with its neighboring fibers reducing the cohesive energy of the materials. The results show that the material energy presents one maximal peak at cross over time which decreases linearly with the applied force and scales with the lifetime of the material. However, the temperature does not have a remarkable effect on the material energy variation. In addition, the link density fiber decreases exponentially with time. The characteristic time of the obtained profile decreases with the applied force. Moreover, this density decreases with applied forces according to the Lorentz law with a remarkable change at critical force value.","PeriodicalId":12228,"journal":{"name":"European Physical Journal-applied Physics","volume":"71 1","pages":"10401"},"PeriodicalIF":0.9000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Physical Journal-applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/epjap/2020200179","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 6
Abstract
In this paper, the fiber energy in composite materials, subject to an external constant load, is studied. The investigation is done in the framework of fiber bundle model with randomly oriented fibers. The charge transfer is done only between neighboring close fibers according to the local load sharing. During the breaking process, the fibers expand, increasing their elastic energy, but when the fiber breaks, it loses its link with its neighboring fibers reducing the cohesive energy of the materials. The results show that the material energy presents one maximal peak at cross over time which decreases linearly with the applied force and scales with the lifetime of the material. However, the temperature does not have a remarkable effect on the material energy variation. In addition, the link density fiber decreases exponentially with time. The characteristic time of the obtained profile decreases with the applied force. Moreover, this density decreases with applied forces according to the Lorentz law with a remarkable change at critical force value.
期刊介绍:
EPJ AP an international journal devoted to the promotion of the recent progresses in all fields of applied physics.
The articles published in EPJ AP span the whole spectrum of applied physics research.