Altered neurotransmission in stress-induced depressive disorders: The underlying role of the amygdala in depression

IF 2.5 3区 医学 Q3 ENDOCRINOLOGY & METABOLISM Neuropeptides Pub Date : 2023-04-01 DOI:10.1016/j.npep.2023.102322
Muhammad Asim , Huajie Wang , Abdul Waris
{"title":"Altered neurotransmission in stress-induced depressive disorders: The underlying role of the amygdala in depression","authors":"Muhammad Asim ,&nbsp;Huajie Wang ,&nbsp;Abdul Waris","doi":"10.1016/j.npep.2023.102322","DOIUrl":null,"url":null,"abstract":"<div><p><span>Depression is the second leading cause of disability in the world population, for which currently available pharmacological therapies either have poor efficacy or have some adverse effects<span><span>. Accumulating evidence from clinical and preclinical studies demonstrates that the </span>amygdala is critically implicated in depressive disorders, though the underlying pathogenesis mechanism needs further investigation. In this literature review, we overviewed depression and the key role of Gamma-aminobutyric acid (GABA) and </span></span>Glutamate<span> neurotransmission<span> in depression. Notably, we discussed a new cholecystokinin-dependent plastic changes mechanism under stress and a possible antidepressant response of cholecystokinin<span> B receptor (CCKBR) antagonist. Moreover, we discussed the fundamental role of the amygdala in depression, to discuss and understand the pathophysiology of depression and the inclusive role of the amygdala in this devastating disorder.</span></span></span></p></div>","PeriodicalId":19254,"journal":{"name":"Neuropeptides","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropeptides","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143417923000033","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 2

Abstract

Depression is the second leading cause of disability in the world population, for which currently available pharmacological therapies either have poor efficacy or have some adverse effects. Accumulating evidence from clinical and preclinical studies demonstrates that the amygdala is critically implicated in depressive disorders, though the underlying pathogenesis mechanism needs further investigation. In this literature review, we overviewed depression and the key role of Gamma-aminobutyric acid (GABA) and Glutamate neurotransmission in depression. Notably, we discussed a new cholecystokinin-dependent plastic changes mechanism under stress and a possible antidepressant response of cholecystokinin B receptor (CCKBR) antagonist. Moreover, we discussed the fundamental role of the amygdala in depression, to discuss and understand the pathophysiology of depression and the inclusive role of the amygdala in this devastating disorder.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应激性抑郁症的神经传递改变:杏仁核在抑郁症中的潜在作用
抑郁症是世界人口残疾的第二大原因,目前可用的药物治疗要么疗效不佳,要么有一些不良反应。从临床和临床前研究中积累的证据表明,杏仁核与抑郁症密切相关,尽管其潜在的发病机制需要进一步研究。在这篇文献综述中,我们综述了抑郁症以及γ-氨基丁酸(GABA)和谷氨酸神经传递在抑郁症中的关键作用。值得注意的是,我们讨论了一种新的胆囊收缩素依赖性可塑性变化机制,以及胆囊收收缩素B受体(CCKBR)拮抗剂可能的抗抑郁反应。此外,我们还讨论了杏仁核在抑郁症中的基本作用,以讨论和理解抑郁症的病理生理学以及杏仁核在这种毁灭性疾病中的包容性作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuropeptides
Neuropeptides 医学-内分泌学与代谢
CiteScore
5.40
自引率
6.90%
发文量
55
审稿时长
>12 weeks
期刊介绍: The aim of Neuropeptides is the rapid publication of original research and review articles, dealing with the structure, distribution, actions and functions of peptides in the central and peripheral nervous systems. The explosion of research activity in this field has led to the identification of numerous naturally occurring endogenous peptides which act as neurotransmitters, neuromodulators, or trophic factors, to mediate nervous system functions. Increasing numbers of non-peptide ligands of neuropeptide receptors have been developed, which act as agonists or antagonists in peptidergic systems. The journal provides a unique opportunity of integrating the many disciplines involved in all neuropeptide research. The journal publishes articles on all aspects of the neuropeptide field, with particular emphasis on gene regulation of peptide expression, peptide receptor subtypes, transgenic and knockout mice with mutations in genes for neuropeptides and peptide receptors, neuroanatomy, physiology, behaviour, neurotrophic factors, preclinical drug evaluation, clinical studies, and clinical trials.
期刊最新文献
Physiologically relevant lactate accumulation from exercise or peripheral injection does not alter central or peripheral appetite signaling in mice GnRH protective effects against long-term potentiation impairment induced by AANAT-siRNA Editorial Board Phosphorylated NPY1R regulates phenotypic transition of vascular smooth muscle cells, inflammatory response and macrophage infiltration to promote intracranial aneurysm progression The restraint stress-induced antinociceptive effects decreased by antagonism of both orexin receptors within the CA1 region of the hippocampus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1