An Ensemble LSTM Architecture for Clinical Sepsis Detection

S. Schellenberger, Kilin Shi, J. P. Wiedemann, F. Lurz, R. Weigel, A. Koelpin
{"title":"An Ensemble LSTM Architecture for Clinical Sepsis Detection","authors":"S. Schellenberger, Kilin Shi, J. P. Wiedemann, F. Lurz, R. Weigel, A. Koelpin","doi":"10.23919/CinC49843.2019.9005457","DOIUrl":null,"url":null,"abstract":"Sepsis is a life-threatening condition that has to be treated at an early stage. Doctors use the Sequential Organ Failure Assessment score for the earliest possible recognition. In addition, the practitioner’s many years of experience help in order to facilitate an immediate response. Mortality decreases with every hour that sepsis is detected and treated with antibiotics. In this years PhysioNet/Computing in Cardiology Challenge the objective is to automatically detect sepsis six hours before the clinical prediction. This paper describes the implementation of an Long Short-Term Memory network for an early detection of sepsis in provided hourly physiological data. An utility score of 0.29 was achieved when testing on the full hidden test set. All entries were submitted using the team name \"404: Sepsis not found\".","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"8 1","pages":"Page 1-Page 4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CinC49843.2019.9005457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Sepsis is a life-threatening condition that has to be treated at an early stage. Doctors use the Sequential Organ Failure Assessment score for the earliest possible recognition. In addition, the practitioner’s many years of experience help in order to facilitate an immediate response. Mortality decreases with every hour that sepsis is detected and treated with antibiotics. In this years PhysioNet/Computing in Cardiology Challenge the objective is to automatically detect sepsis six hours before the clinical prediction. This paper describes the implementation of an Long Short-Term Memory network for an early detection of sepsis in provided hourly physiological data. An utility score of 0.29 was achieved when testing on the full hidden test set. All entries were submitted using the team name "404: Sepsis not found".
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于临床脓毒症检测的集成LSTM体系结构
败血症是一种危及生命的疾病,必须在早期治疗。医生使用序贯器官衰竭评估评分来尽早识别。此外,从业人员多年的经验有助于迅速作出反应。发现败血症并使用抗生素治疗的时间越长,死亡率就越低。在今年的PhysioNet/Computing In Cardiology挑战赛中,目标是在临床预测前6小时自动检测败血症。这篇论文描述了一个长短期记忆网络的实现,在提供的每小时生理数据中早期检测败血症。在对完整隐藏测试集进行测试时,实现了0.29的效用得分。所有参赛作品都以“404:败血症未找到”的团队名称提交。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Automated Approach Based on a Convolutional Neural Network for Left Atrium Segmentation From Late Gadolinium Enhanced Magnetic Resonance Imaging Multiobjective Optimization Approach to Localization of Ectopic Beats by Single Dipole: Case Study Sepsis Prediction in Intensive Care Unit Using Ensemble of XGboost Models A Comparative Analysis of HMM and CRF for Early Prediction of Sepsis Blocking L-Type Calcium Current Reduces Vulnerability to Re-Entry in Human iPSC-Derived Cardiomyocytes Tissue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1