Frequency-domain nonlinearity analysis of noise from a high-performance jet aircraft

K. Gee, Kyle G. Miller, Brent O. Reichman, Alan T. Wall
{"title":"Frequency-domain nonlinearity analysis of noise from a high-performance jet aircraft","authors":"K. Gee, Kyle G. Miller, Brent O. Reichman, Alan T. Wall","doi":"10.1121/2.0000899","DOIUrl":null,"url":null,"abstract":"Characterization of far-field jet noise spectral evolution can be performed locally with a single microphone measurement using a gain factor that stems from the ensemble-averaged, frequency-domain version of the generalized Burgers equation. The factor quantifies the nonlinear change in the sound pressure level spectrum over distance [B. O. Reichman et al., J. Acoust. Soc. Am. 139, 2505-2513 (2016)]. Here, noise waveforms from a high-performance military jet aircraft are characterized with this gain factor and compared to propagation losses from geometric spreading and atmospheric absorption. Far-field results show that the high-frequency nonlinear gains at high frequencies tend to balance the absorption losses, thus establishing the characteristic spectral slope present in shock-containing noise. Differences as a function of angle, distance, and engine condition are explored.Characterization of far-field jet noise spectral evolution can be performed locally with a single microphone measurement using a gain factor that stems from the ensemble-averaged, frequency-domain version of the generalized Burgers equation. The factor quantifies the nonlinear change in the sound pressure level spectrum over distance [B. O. Reichman et al., J. Acoust. Soc. Am. 139, 2505-2513 (2016)]. Here, noise waveforms from a high-performance military jet aircraft are characterized with this gain factor and compared to propagation losses from geometric spreading and atmospheric absorption. Far-field results show that the high-frequency nonlinear gains at high frequencies tend to balance the absorption losses, thus establishing the characteristic spectral slope present in shock-containing noise. Differences as a function of angle, distance, and engine condition are explored.","PeriodicalId":20469,"journal":{"name":"Proc. Meet. Acoust.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. Meet. Acoust.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/2.0000899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Characterization of far-field jet noise spectral evolution can be performed locally with a single microphone measurement using a gain factor that stems from the ensemble-averaged, frequency-domain version of the generalized Burgers equation. The factor quantifies the nonlinear change in the sound pressure level spectrum over distance [B. O. Reichman et al., J. Acoust. Soc. Am. 139, 2505-2513 (2016)]. Here, noise waveforms from a high-performance military jet aircraft are characterized with this gain factor and compared to propagation losses from geometric spreading and atmospheric absorption. Far-field results show that the high-frequency nonlinear gains at high frequencies tend to balance the absorption losses, thus establishing the characteristic spectral slope present in shock-containing noise. Differences as a function of angle, distance, and engine condition are explored.Characterization of far-field jet noise spectral evolution can be performed locally with a single microphone measurement using a gain factor that stems from the ensemble-averaged, frequency-domain version of the generalized Burgers equation. The factor quantifies the nonlinear change in the sound pressure level spectrum over distance [B. O. Reichman et al., J. Acoust. Soc. Am. 139, 2505-2513 (2016)]. Here, noise waveforms from a high-performance military jet aircraft are characterized with this gain factor and compared to propagation losses from geometric spreading and atmospheric absorption. Far-field results show that the high-frequency nonlinear gains at high frequencies tend to balance the absorption losses, thus establishing the characteristic spectral slope present in shock-containing noise. Differences as a function of angle, distance, and engine condition are explored.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高性能喷气式飞机噪声的频域非线性分析
远场射流噪声频谱演变的表征可以通过单个麦克风测量来局部完成,使用增益因子,该增益因子源于广义Burgers方程的集成平均频域版本。该因子量化了声压级谱随距离的非线性变化[B]。O. Reichman等,J. Acoust。Soc。[j].农业科学学报,2016,(5):387 - 387。本文利用该增益系数对高性能军用喷气飞机的噪声波形进行了表征,并将其与几何扩散和大气吸收造成的传播损失进行了比较。远场结果表明,高频处的高频非线性增益趋于平衡吸收损失,从而建立了含冲击噪声中的特征谱斜率。差异作为函数的角度,距离和发动机条件进行了探讨。远场射流噪声频谱演变的表征可以通过单个麦克风测量来局部完成,使用增益因子,该增益因子源于广义Burgers方程的集成平均频域版本。该因子量化了声压级谱随距离的非线性变化[B]。O. Reichman等,J. Acoust。Soc。[j].农业科学学报,2016,(5):387 - 387。本文利用该增益系数对高性能军用喷气飞机的噪声波形进行了表征,并将其与几何扩散和大气吸收造成的传播损失进行了比较。远场结果表明,高频处的高频非线性增益趋于平衡吸收损失,从而建立了含冲击噪声中的特征谱斜率。差异作为函数的角度,距离和发动机条件进行了探讨。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Different origins of acoustic streaming at resonance Clinical studies of biceps anisotropy, relaxation and nonlinearity with a medical device for ultrasonic imaging Prospective medical applications of Nonlinear Time Reversal Acoustics Nonlinear relaxation in geomaterials: New results Numerical investigation of self-focused Lamb waves in anisotropic media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1