{"title":"High-School Computer Science – Its Effect on the Choice of Higher Education","authors":"M. Armoni, J. Gal-Ezer","doi":"10.15388/infedu.2023.14","DOIUrl":null,"url":null,"abstract":"In a previous publication we examined the connections between high-school computer science (CS) and computing higher education. The results were promising—students who were exposed to computing in high school were more likely to take one of the computing disciplines. However, these correlations were not necessarily causal. Possibly those students who took CS courses, and especially high-level CS courses in high school, were already a priori inclined to pursue computing education. This uncertainty led us to pursue the current research. We aimed at finding those factors that induced students to choose CS at high school and later at higher-education institutes. We present quantitative findings obtained from analyzing freshmen computing students' responses to a designated questionnaire. The findings show that not only did high-school CS studies have a major impact on students’ choice whether to study computing in higher education—it may have also improved their view of the discipline.","PeriodicalId":45270,"journal":{"name":"Informatics in Education","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15388/infedu.2023.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 2
Abstract
In a previous publication we examined the connections between high-school computer science (CS) and computing higher education. The results were promising—students who were exposed to computing in high school were more likely to take one of the computing disciplines. However, these correlations were not necessarily causal. Possibly those students who took CS courses, and especially high-level CS courses in high school, were already a priori inclined to pursue computing education. This uncertainty led us to pursue the current research. We aimed at finding those factors that induced students to choose CS at high school and later at higher-education institutes. We present quantitative findings obtained from analyzing freshmen computing students' responses to a designated questionnaire. The findings show that not only did high-school CS studies have a major impact on students’ choice whether to study computing in higher education—it may have also improved their view of the discipline.
期刊介绍:
INFORMATICS IN EDUCATION publishes original articles about theoretical, experimental and methodological studies in the fields of informatics (computer science) education and educational applications of information technology, ranging from primary to tertiary education. Multidisciplinary research studies that enhance our understanding of how theoretical and technological innovations translate into educational practice are most welcome. We are particularly interested in work at boundaries, both the boundaries of informatics and of education. The topics covered by INFORMATICS IN EDUCATION will range across diverse aspects of informatics (computer science) education research including: empirical studies, including composing different approaches to teach various subjects, studying availability of various concepts at a given age, measuring knowledge transfer and skills developed, addressing gender issues, etc. statistical research on big data related to informatics (computer science) activities including e.g. research on assessment, online teaching, competitions, etc. educational engineering focusing mainly on developing high quality original teaching sequences of different informatics (computer science) topics that offer new, successful ways for knowledge transfer and development of computational thinking machine learning of student''s behavior including the use of information technology to observe students in the learning process and discovering clusters of their working design and evaluation of educational tools that apply information technology in novel ways.