MIMO-Net: A multi-input multi-output convolutional neural network for cell segmentation in fluorescence microscopy images

S. Raza, Linda Cheung, David B. A. Epstein, S. Pelengaris, Michael Khan, N. Rajpoot
{"title":"MIMO-Net: A multi-input multi-output convolutional neural network for cell segmentation in fluorescence microscopy images","authors":"S. Raza, Linda Cheung, David B. A. Epstein, S. Pelengaris, Michael Khan, N. Rajpoot","doi":"10.1109/ISBI.2017.7950532","DOIUrl":null,"url":null,"abstract":"We propose a novel multiple-input multiple-output convolution neural network (MIMO-Net) for cell segmentation in fluorescence microscopy images. The proposed network trains the network parameters using multiple resolutions of the input image, connects the intermediate layers for better localization and context and generates the output using multi-resolution deconvolution filters. The MIMO-Net allows us to deal with variable intensity cell boundaries and highly variable cell size in the mouse pancreatic tissue by adding extra convolutional layers which bypass the max-pooling operation. The results show that our method outperforms state-of-the-art deep learning based approaches for segmentation.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":"35 1","pages":"337-340"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

Abstract

We propose a novel multiple-input multiple-output convolution neural network (MIMO-Net) for cell segmentation in fluorescence microscopy images. The proposed network trains the network parameters using multiple resolutions of the input image, connects the intermediate layers for better localization and context and generates the output using multi-resolution deconvolution filters. The MIMO-Net allows us to deal with variable intensity cell boundaries and highly variable cell size in the mouse pancreatic tissue by adding extra convolutional layers which bypass the max-pooling operation. The results show that our method outperforms state-of-the-art deep learning based approaches for segmentation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MIMO-Net:用于荧光显微镜图像细胞分割的多输入多输出卷积神经网络
我们提出了一种新的多输入多输出卷积神经网络(MIMO-Net)用于荧光显微镜图像的细胞分割。该网络使用输入图像的多个分辨率来训练网络参数,连接中间层以获得更好的定位和上下文,并使用多分辨率反卷积滤波器生成输出。MIMO-Net允许我们通过添加额外的卷积层来绕过最大池化操作,从而处理小鼠胰腺组织中可变强度的细胞边界和高度可变的细胞大小。结果表明,我们的方法优于最先进的基于深度学习的分割方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of adrenal lesions through spatial Bayesian modeling of GLCM Correction of partial volume effect in 99mTc-TRODAT-1 brain SPECT images using an edge-preserving weighted regularization Two-dimensional speckle tracking using parabolic polynomial expansion with Riesz transform Elastic registration of high-resolution 3D PLI data of the human brain Registration of ultra-high resolution 3D PLI data of human brain sections to their corresponding high-resolution counterpart
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1