Raja Zahirudin Raja Ismail, Zahrin Zain, Mohd Noor Baharin Che Kamaruddin, Mohd Faridz Mod Yunoh
{"title":"Assessment on Deformed Pipeline Using Integrated Metal Magnetic Memory i-MMM Technology","authors":"Raja Zahirudin Raja Ismail, Zahrin Zain, Mohd Noor Baharin Che Kamaruddin, Mohd Faridz Mod Yunoh","doi":"10.4043/31424-ms","DOIUrl":null,"url":null,"abstract":"\n This paper aims to share a new concept of assets condition assessment knows as Integrated Metal Magnetic Memory (i-MMM) which integrates capability of various Non-Destructive Testing (NDT) technology in determining the current state of deformed pipeline due to external loadings.\n MMM technology is one of NDT technique which can be used for early failure detection especially for Stress Concentration Zones (SCZ), microcrack and fatigue damage for ferromagnetic components. MMM is a passive technology tools that relies on the measurement of Self-magnetic Leakage Field (SMLF) of the ferromagnetic materials. Most of the traditional NDT method able to inspect the macro defect but incapable to identify micro defect due to the stress concentration zone. Based on this, MMM can be integrated and complimentary in its capability to other well-known NDT testing such as Ultrasonic Testing (UT) and Hardness Test.\n A case study presented whereby iMMM can be utilized to determined location which are prone to deformation due to stress and detailed assessment from changes of hardness up to development of macro size defect. Based on the findings in the case study, 2 microcrack were found at 2 inspected location of the pipeline.\n Finally, based on the results and findings from the integrated approach of i-MMM, it can contribute and provide more impact on the simulation analysis by providing focused anomaly area or location and reduced the processing time.","PeriodicalId":11011,"journal":{"name":"Day 3 Thu, March 24, 2022","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, March 24, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/31424-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper aims to share a new concept of assets condition assessment knows as Integrated Metal Magnetic Memory (i-MMM) which integrates capability of various Non-Destructive Testing (NDT) technology in determining the current state of deformed pipeline due to external loadings.
MMM technology is one of NDT technique which can be used for early failure detection especially for Stress Concentration Zones (SCZ), microcrack and fatigue damage for ferromagnetic components. MMM is a passive technology tools that relies on the measurement of Self-magnetic Leakage Field (SMLF) of the ferromagnetic materials. Most of the traditional NDT method able to inspect the macro defect but incapable to identify micro defect due to the stress concentration zone. Based on this, MMM can be integrated and complimentary in its capability to other well-known NDT testing such as Ultrasonic Testing (UT) and Hardness Test.
A case study presented whereby iMMM can be utilized to determined location which are prone to deformation due to stress and detailed assessment from changes of hardness up to development of macro size defect. Based on the findings in the case study, 2 microcrack were found at 2 inspected location of the pipeline.
Finally, based on the results and findings from the integrated approach of i-MMM, it can contribute and provide more impact on the simulation analysis by providing focused anomaly area or location and reduced the processing time.