A Spline Dimensional Decomposition for Uncertainty Quantification in High Dimensions

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2021-11-25 DOI:10.1137/20m1364175
S. Rahman, Ramin Jahanbin
{"title":"A Spline Dimensional Decomposition for Uncertainty Quantification in High Dimensions","authors":"S. Rahman, Ramin Jahanbin","doi":"10.1137/20m1364175","DOIUrl":null,"url":null,"abstract":"This study debuts a new spline dimensional decomposition (SDD) for uncertainty quantification analysis of high-dimensional functions, including those endowed with high nonlinearity and nonsmoothness, if they exist, in a proficient manner. The decomposition creates an hierarchical expansion for an output random variable of interest with respect to measure-consistent orthonormalized basis splines (B-splines) in independent input random variables. A dimensionwise decomposition of a spline space into orthogonal subspaces, each spanned by a reduced set of such orthonormal splines, results in SDD. Exploiting the modulus of smoothness, the SDD approximation is shown to converge in mean-square to the correct limit. The computational complexity of the SDD method is polynomial, as opposed to exponential, thus alleviating the curse of dimensionality to the extent possible. Analytical formulae are proposed to calculate the second-moment properties of a truncated SDD approximation for a general output random variable in terms of the expansion coefficients involved. Numerical results indicate that a low-order SDD approximation of nonsmooth functions calculates the probabilistic characteristics of an output variable with an accuracy matching or surpassing those obtained by high-order approximations from several existing methods. Finally, a 34-dimensional random eigenvalue analysis demonstrates the utility of SDD in solving practical problems.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/20m1364175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 10

Abstract

This study debuts a new spline dimensional decomposition (SDD) for uncertainty quantification analysis of high-dimensional functions, including those endowed with high nonlinearity and nonsmoothness, if they exist, in a proficient manner. The decomposition creates an hierarchical expansion for an output random variable of interest with respect to measure-consistent orthonormalized basis splines (B-splines) in independent input random variables. A dimensionwise decomposition of a spline space into orthogonal subspaces, each spanned by a reduced set of such orthonormal splines, results in SDD. Exploiting the modulus of smoothness, the SDD approximation is shown to converge in mean-square to the correct limit. The computational complexity of the SDD method is polynomial, as opposed to exponential, thus alleviating the curse of dimensionality to the extent possible. Analytical formulae are proposed to calculate the second-moment properties of a truncated SDD approximation for a general output random variable in terms of the expansion coefficients involved. Numerical results indicate that a low-order SDD approximation of nonsmooth functions calculates the probabilistic characteristics of an output variable with an accuracy matching or surpassing those obtained by high-order approximations from several existing methods. Finally, a 34-dimensional random eigenvalue analysis demonstrates the utility of SDD in solving practical problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高维不确定度量化的样条维数分解
本研究提出了一种新的样条维数分解(SDD)方法,用于高维函数的不确定度量化分析,包括那些具有高非线性和非光滑的函数,如果它们存在的话。该分解为感兴趣的输出随机变量创建了相对于独立输入随机变量中测量一致的标准标准化基样条(b样条)的分层扩展。将样条空间按维分解为正交子空间,每个子空间由这样的正交样条的约简集张成,得到SDD。利用平滑模,SDD近似在均方中收敛到正确的极限。SDD方法的计算复杂度是多项式的,而不是指数的,因此可以最大程度地减轻维数的困扰。给出了用所涉及的展开系数计算一般输出随机变量截断SDD近似的二阶矩性质的解析公式。数值结果表明,非光滑函数的低阶SDD近似计算输出变量的概率特征,其精度与现有几种方法的高阶近似相匹配或优于。最后,一个34维随机特征值分析证明了SDD在解决实际问题中的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1