{"title":"Nonlinear Resonant Ultrasonic Spectroscopy (NRUS) for Monitoring Fatigue Crack Growth in Aluminum","authors":"Jiang Jin, P. Shokouhi","doi":"10.1080/09349847.2021.2017530","DOIUrl":null,"url":null,"abstract":"ABSTRACT Nonlinear resonant ultrasonic spectroscopy (NRUS) is a resonance-based acoustic testing technique that yields the hysteretic elastic nonlinearity parameter by measuring the resonance frequency shift with increasing driving amplitude. NRUS offers great potential for nondestructive evaluation since it is relatively simple to implement and can detect incipient damage thanks to the high sensitivity of hysteretic nonlinearity parameter to micro-damage. Previous research has shown that NRUS can monitor distributed damage in a wide variety of materials, but the application of NRUS for detection of local defects in metals is less explored. In this study, the feasibility of using NRUS to assess local progressive damage in aluminum is investigated. We use three-point bending fatigue test to initiate a single fatigue crack in a large aluminum specimen. The cyclic loading is interrupted at several stages in order to image the crack using Scanning Electron Microscopy (SEM) and to perform NRUS and other tests. As the crack grows in length, NRUS records a gradual increase in the resonance frequency shift. However, the trend for the amplitude dependency of resonance frequency shift is different from what has been previously reported in materials with distributed damage; the resonance frequency changes are larger at low strain than at high strains. In addition, the utility of multi-modal NRUS for locating the fatigue crack is demonstrated. Finally, we compare the results of NRUS and those from an impact-based NRUS (INRUS) that uses an automated impact hammer as the excitation source in differentiating the fatigue-damaged from the intact specimen. Our findings suggest the potential of NRUS and INRUS in detecting local damage in metals.","PeriodicalId":54493,"journal":{"name":"Research in Nondestructive Evaluation","volume":"36 1","pages":"4 - 16"},"PeriodicalIF":1.0000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09349847.2021.2017530","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT Nonlinear resonant ultrasonic spectroscopy (NRUS) is a resonance-based acoustic testing technique that yields the hysteretic elastic nonlinearity parameter by measuring the resonance frequency shift with increasing driving amplitude. NRUS offers great potential for nondestructive evaluation since it is relatively simple to implement and can detect incipient damage thanks to the high sensitivity of hysteretic nonlinearity parameter to micro-damage. Previous research has shown that NRUS can monitor distributed damage in a wide variety of materials, but the application of NRUS for detection of local defects in metals is less explored. In this study, the feasibility of using NRUS to assess local progressive damage in aluminum is investigated. We use three-point bending fatigue test to initiate a single fatigue crack in a large aluminum specimen. The cyclic loading is interrupted at several stages in order to image the crack using Scanning Electron Microscopy (SEM) and to perform NRUS and other tests. As the crack grows in length, NRUS records a gradual increase in the resonance frequency shift. However, the trend for the amplitude dependency of resonance frequency shift is different from what has been previously reported in materials with distributed damage; the resonance frequency changes are larger at low strain than at high strains. In addition, the utility of multi-modal NRUS for locating the fatigue crack is demonstrated. Finally, we compare the results of NRUS and those from an impact-based NRUS (INRUS) that uses an automated impact hammer as the excitation source in differentiating the fatigue-damaged from the intact specimen. Our findings suggest the potential of NRUS and INRUS in detecting local damage in metals.
期刊介绍:
Research in Nondestructive Evaluation® is the archival research journal of the American Society for Nondestructive Testing, Inc. RNDE® contains the results of original research in all areas of nondestructive evaluation (NDE). The journal covers experimental and theoretical investigations dealing with the scientific and engineering bases of NDE, its measurement and methodology, and a wide range of applications to materials and structures that relate to the entire life cycle, from manufacture to use and retirement.
Illustrative topics include advances in the underlying science of acoustic, thermal, electrical, magnetic, optical and ionizing radiation techniques and their applications to NDE problems. These problems include the nondestructive characterization of a wide variety of material properties and their degradation in service, nonintrusive sensors for monitoring manufacturing and materials processes, new techniques and combinations of techniques for detecting and characterizing hidden discontinuities and distributed damage in materials, standardization concepts and quantitative approaches for advanced NDE techniques, and long-term continuous monitoring of structures and assemblies. Of particular interest is research which elucidates how to evaluate the effects of imperfect material condition, as quantified by nondestructive measurement, on the functional performance.