A Free-Energy Principle for Representation Learning

Yansong Gao, P. Chaudhari
{"title":"A Free-Energy Principle for Representation Learning","authors":"Yansong Gao, P. Chaudhari","doi":"10.1088/2632-2153/ABF984","DOIUrl":null,"url":null,"abstract":"This paper employs a formal connection of machine learning with thermodynamics to characterize the quality of learnt representations for transfer learning. We discuss how information-theoretic functional such as rate, distortion and classification loss of a model lie on a convex, so-called equilibrium surface.We prescribe dynamical processes to traverse this surface under constraints, e.g., an iso-classification process that trades off rate and distortion to keep the classification loss unchanged. We demonstrate how this process can be used for transferring representations from a source dataset to a target dataset while keeping the classification loss constant. Experimental validation of the theoretical results is provided on standard image-classification datasets.","PeriodicalId":18148,"journal":{"name":"Mach. Learn. Sci. Technol.","volume":"36 1","pages":"45004"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mach. Learn. Sci. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ABF984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper employs a formal connection of machine learning with thermodynamics to characterize the quality of learnt representations for transfer learning. We discuss how information-theoretic functional such as rate, distortion and classification loss of a model lie on a convex, so-called equilibrium surface.We prescribe dynamical processes to traverse this surface under constraints, e.g., an iso-classification process that trades off rate and distortion to keep the classification loss unchanged. We demonstrate how this process can be used for transferring representations from a source dataset to a target dataset while keeping the classification loss constant. Experimental validation of the theoretical results is provided on standard image-classification datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
表征学习的自由能原理
本文采用机器学习与热力学的形式化联系来表征迁移学习的学习表征的质量。我们讨论了一个模型的比率、失真和分类损失等信息论泛函如何位于一个凸的所谓的平衡面上。我们规定了在约束下遍历这个表面的动态过程,例如,一个等分类过程,它权衡了速率和失真以保持分类损失不变。我们演示了如何使用此过程将表示从源数据集传输到目标数据集,同时保持分类损失恒定。在标准图像分类数据集上对理论结果进行了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transforming two-dimensional tensor networks into quantum circuits for supervised learning Propagation of priors for more accurate and efficient spectroscopic functional fits and their application to ferroelectric hysteresis Neural network analysis of neutron and x-ray reflectivity data: pathological cases, performance and perspectives Advances in scientific literature mining for interpreting materials characterization Phases of learning dynamics in artificial neural networks in the absence or presence of mislabeled data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1