M. Maashi, M. Al-Hagery, Mohammed Rizwanullah, A. Osman
{"title":"Automated Gesture Recognition Using African Vulture Optimization with Deep Learning for Visually Impaired People on Sensory Modality Data","authors":"M. Maashi, M. Al-Hagery, Mohammed Rizwanullah, A. Osman","doi":"10.57197/jdr-2023-0019","DOIUrl":null,"url":null,"abstract":"Gesture recognition for visually impaired persons (VIPs) is a useful technology for enhancing their communications and increasing accessibility. It is vital to understand the specific needs and challenges faced by VIPs when planning a gesture recognition model. But, typical gesture recognition methods frequently depend on the visual input (for instance, cameras); it can be vital to discover other sensory modalities for input. The deep learning (DL)-based gesture recognition method is effective for the interaction of VIPs with their devices. It offers a further intuitive and natural way of relating with technology, creating it more available for everybody. Therefore, this study presents an African Vulture Optimization with Deep Learning-based Gesture Recognition for Visually Impaired People on Sensory Modality Data (AVODL-GRSMD) technique. The AVODL-GRSMD technique mainly focuses on the utilization of the DL model with hyperparameter tuning strategy for a productive and accurate gesture detection and classification process. The AVODL-GRSMD technique utilizes the primary data preprocessing stage to normalize the input sensor data. The AVODL-GRSMD technique uses a multi-head attention-based bidirectional gated recurrent unit (MHA-BGRU) method for accurate gesture recognition. Finally, the hyperparameter optimization of the MHA-BGRU method can be performed by the use of African Vulture Optimization with Deep Learning (AVO) approach. A series of simulation analyses were performed to demonstrate the superior performance of the AVODL-GRSMD technique. The experimental values demonstrate the better recognition rate of the AVODL-GRSMD technique compared to that of the state-of-the-art models.","PeriodicalId":46073,"journal":{"name":"Scandinavian Journal of Disability Research","volume":"4 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Disability Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.57197/jdr-2023-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REHABILITATION","Score":null,"Total":0}
引用次数: 0
Abstract
Gesture recognition for visually impaired persons (VIPs) is a useful technology for enhancing their communications and increasing accessibility. It is vital to understand the specific needs and challenges faced by VIPs when planning a gesture recognition model. But, typical gesture recognition methods frequently depend on the visual input (for instance, cameras); it can be vital to discover other sensory modalities for input. The deep learning (DL)-based gesture recognition method is effective for the interaction of VIPs with their devices. It offers a further intuitive and natural way of relating with technology, creating it more available for everybody. Therefore, this study presents an African Vulture Optimization with Deep Learning-based Gesture Recognition for Visually Impaired People on Sensory Modality Data (AVODL-GRSMD) technique. The AVODL-GRSMD technique mainly focuses on the utilization of the DL model with hyperparameter tuning strategy for a productive and accurate gesture detection and classification process. The AVODL-GRSMD technique utilizes the primary data preprocessing stage to normalize the input sensor data. The AVODL-GRSMD technique uses a multi-head attention-based bidirectional gated recurrent unit (MHA-BGRU) method for accurate gesture recognition. Finally, the hyperparameter optimization of the MHA-BGRU method can be performed by the use of African Vulture Optimization with Deep Learning (AVO) approach. A series of simulation analyses were performed to demonstrate the superior performance of the AVODL-GRSMD technique. The experimental values demonstrate the better recognition rate of the AVODL-GRSMD technique compared to that of the state-of-the-art models.