Machine learning forecasts of the cosmic distance duality relation with strongly lensed gravitational wave events

R. Arjona, Hai-Nan Lin, S. Nesseris, Li Tang
{"title":"Machine learning forecasts of the cosmic distance duality relation with strongly lensed gravitational wave events","authors":"R. Arjona, Hai-Nan Lin, S. Nesseris, Li Tang","doi":"10.1103/PhysRevD.103.103513","DOIUrl":null,"url":null,"abstract":"We use simulated data from strongly lensed gravitational wave events from the Einstein Telescope to forecast constraints on the cosmic distance duality relation, also known as the Etherington relation, which relates the luminosity and angular diameter distances $d_L(z)$ and $d_A(z)$ respectively. In particular, we present a methodology to make robust mocks for the duality parameter $\\eta(z)\\equiv \\frac{d_L(z)}{(1+z)^2 d_A(z)}$ and then we use Genetic Algorithms and Gaussian Processes, two stochastic minimization and symbolic regression subclasses of machine learning methods, to perform model independent forecasts of $\\eta(z)$. We find that both machine learning approaches are capable of correctly recovering the underlying fiducial model and provide percent-level constraints at intermediate redshifts when applied to future Einstein Telescope data.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevD.103.103513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We use simulated data from strongly lensed gravitational wave events from the Einstein Telescope to forecast constraints on the cosmic distance duality relation, also known as the Etherington relation, which relates the luminosity and angular diameter distances $d_L(z)$ and $d_A(z)$ respectively. In particular, we present a methodology to make robust mocks for the duality parameter $\eta(z)\equiv \frac{d_L(z)}{(1+z)^2 d_A(z)}$ and then we use Genetic Algorithms and Gaussian Processes, two stochastic minimization and symbolic regression subclasses of machine learning methods, to perform model independent forecasts of $\eta(z)$. We find that both machine learning approaches are capable of correctly recovering the underlying fiducial model and provide percent-level constraints at intermediate redshifts when applied to future Einstein Telescope data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习预测宇宙距离对偶关系与强透镜引力波事件
我们使用来自爱因斯坦望远镜的强透镜引力波事件的模拟数据来预测宇宙距离对偶关系(也称为Etherington关系)的约束,该关系分别与光度和角直径距离$d_L(z)$和$d_A(z)$有关。特别是,我们提出了一种方法来对对偶参数$\eta(z)\equiv \frac{d_L(z)}{(1+z)^2 d_A(z)}$进行鲁棒模拟,然后我们使用遗传算法和高斯过程,两个随机最小化和符号回归子类的机器学习方法,来执行$\eta(z)$的模型独立预测。我们发现,这两种机器学习方法都能够正确地恢复基础模型,并在应用于未来的爱因斯坦望远镜数据时提供中间红移的百分比水平约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Primordial Black Holes: from Theory to Gravitational Wave Observations Chasing the Tail of Cosmic Reionization with Dark Gap Statistics in the Ly$α$ Forest over $5 < z < 6$ Hubble tension and absolute constraints on the local Hubble parameter. Towards an Optimal Estimation of Cosmological Parameters with the Wavelet Scattering Transform Assessment of the cosmic distance duality relation using Gaussian process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1