Multi-trait analysis of gene-by-environment interactions in large-scale genetic studies.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-04-15 DOI:10.1093/biostatistics/kxad004
Lan Luo, Devan V Mehrotra, Judong Shen, Zheng-Zheng Tang
{"title":"Multi-trait analysis of gene-by-environment interactions in large-scale genetic studies.","authors":"Lan Luo, Devan V Mehrotra, Judong Shen, Zheng-Zheng Tang","doi":"10.1093/biostatistics/kxad004","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying genotype-by-environment interaction (GEI) is challenging because the GEI analysis generally has low power. Large-scale consortium-based studies are ultimately needed to achieve adequate power for identifying GEI. We introduce Multi-Trait Analysis of Gene-Environment Interactions (MTAGEI), a powerful, robust, and computationally efficient framework to test gene-environment interactions on multiple traits in large data sets, such as the UK Biobank (UKB). To facilitate the meta-analysis of GEI studies in a consortium, MTAGEI efficiently generates summary statistics of genetic associations for multiple traits under different environmental conditions and integrates the summary statistics for GEI analysis. MTAGEI enhances the power of GEI analysis by aggregating GEI signals across multiple traits and variants that would otherwise be difficult to detect individually. MTAGEI achieves robustness by combining complementary tests under a wide spectrum of genetic architectures. We demonstrate the advantages of MTAGEI over existing single-trait-based GEI tests through extensive simulation studies and the analysis of the whole exome sequencing data from the UKB.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxad004","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying genotype-by-environment interaction (GEI) is challenging because the GEI analysis generally has low power. Large-scale consortium-based studies are ultimately needed to achieve adequate power for identifying GEI. We introduce Multi-Trait Analysis of Gene-Environment Interactions (MTAGEI), a powerful, robust, and computationally efficient framework to test gene-environment interactions on multiple traits in large data sets, such as the UK Biobank (UKB). To facilitate the meta-analysis of GEI studies in a consortium, MTAGEI efficiently generates summary statistics of genetic associations for multiple traits under different environmental conditions and integrates the summary statistics for GEI analysis. MTAGEI enhances the power of GEI analysis by aggregating GEI signals across multiple traits and variants that would otherwise be difficult to detect individually. MTAGEI achieves robustness by combining complementary tests under a wide spectrum of genetic architectures. We demonstrate the advantages of MTAGEI over existing single-trait-based GEI tests through extensive simulation studies and the analysis of the whole exome sequencing data from the UKB.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模遗传研究中基因与环境相互作用的多属性分析。
鉴定基因型与环境的交互作用(GEI)具有挑战性,因为 GEI 分析的功率通常较低。最终需要进行大规模的联合研究,以获得足够的功率来识别 GEI。我们介绍了基因与环境互作的多性状分析(MTAGEI),这是一个功能强大、稳健且计算效率高的框架,用于测试英国生物库(UKB)等大型数据集中多个性状的基因与环境互作。为便于在联合体中对 GEI 研究进行荟萃分析,MTAGEI 可高效生成不同环境条件下多个性状的遗传关联汇总统计,并将汇总统计整合到 GEI 分析中。MTAGEI 通过汇总多个性状和变异的 GEI 信号,增强了 GEI 分析的能力,否则很难单独检测到这些信号。MTAGEI 通过在广泛的遗传结构下结合互补测试来实现稳健性。我们通过广泛的模拟研究和对英国广播公司全外显子组测序数据的分析,证明了 MTAGEI 与现有的基于单一性状的 GEI 检测相比所具有的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1