Perspectives on Artificial Intelligence for Predictions in Ecohydrology

Elias C. Massoud, Forrest Hoffman, Zheng Shi, Jinyun Tang, Elie Alhajjar, Mallory Barnes, R. Braghiere, Zoe Cardon, Nathan Collier, Octavia Crompton, P. Dennedy‐Frank, S. Gautam, Miquel A Gonzalez-Meler, Julia K. Green, Charles Koven, Paul Levine, Natasha MacBean, J. Mao, Richard Tran Mills, U. Mishra, M. Mudunuru, Alexandre A. Renchon, Sarah Scott, E. Siirila‐Woodburn, Matthias Sprenger, C. Tague, Yaoping Wang, Chonggang Xu, C. Zarakas
{"title":"Perspectives on Artificial Intelligence for Predictions in Ecohydrology","authors":"Elias C. Massoud, Forrest Hoffman, Zheng Shi, Jinyun Tang, Elie Alhajjar, Mallory Barnes, R. Braghiere, Zoe Cardon, Nathan Collier, Octavia Crompton, P. Dennedy‐Frank, S. Gautam, Miquel A Gonzalez-Meler, Julia K. Green, Charles Koven, Paul Levine, Natasha MacBean, J. Mao, Richard Tran Mills, U. Mishra, M. Mudunuru, Alexandre A. Renchon, Sarah Scott, E. Siirila‐Woodburn, Matthias Sprenger, C. Tague, Yaoping Wang, Chonggang Xu, C. Zarakas","doi":"10.1175/aies-d-23-0005.1","DOIUrl":null,"url":null,"abstract":"\nIn November 2021, the Artificial Intelligence for Earth System Predictability (AI4ESP) workshop was held, which involved hundreds of researchers from dozens of institutions (Hickmon et al., 2022). There were 17 sessions held at the workshop, including one on Ecohydrology. The Ecohydrology session included various break-out rooms that addressed specific topics, including: 1) Soils & Belowground, 2) Watersheds, 3) Hydrology, 4) Ecophysiology & Plant Hydraulics, 5) Ecology, 6) Extremes, Disturbance & Fire, and Land Use & Land Cover Change, and 7) Uncertainty Quantification Methods & Techniques. In this paper, we investigate and report on the potential application of Artificial Intelligence and Machine Learning (AI/ML) in Ecohydrology, highlight outcomes of the Ecohydrology session at the AI4ESP workshop, and provide visionary perspectives for future research in this area.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/aies-d-23-0005.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In November 2021, the Artificial Intelligence for Earth System Predictability (AI4ESP) workshop was held, which involved hundreds of researchers from dozens of institutions (Hickmon et al., 2022). There were 17 sessions held at the workshop, including one on Ecohydrology. The Ecohydrology session included various break-out rooms that addressed specific topics, including: 1) Soils & Belowground, 2) Watersheds, 3) Hydrology, 4) Ecophysiology & Plant Hydraulics, 5) Ecology, 6) Extremes, Disturbance & Fire, and Land Use & Land Cover Change, and 7) Uncertainty Quantification Methods & Techniques. In this paper, we investigate and report on the potential application of Artificial Intelligence and Machine Learning (AI/ML) in Ecohydrology, highlight outcomes of the Ecohydrology session at the AI4ESP workshop, and provide visionary perspectives for future research in this area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能在生态水文预测中的应用展望
2021年11月,举办了地球系统可预测性人工智能(AI4ESP)研讨会,来自数十个机构的数百名研究人员参加了该研讨会(Hickmon et al., 2022)。研讨会共举行了17场会议,其中一场是关于生态水文学的。生态水文学会议包括不同的分组会议,讨论具体的主题,包括:1)土壤与地下,2)流域,3)水文学,4)生态生理学与植物水力学,5)生态学,6)极端,扰动与火灾,土地利用与土地覆盖变化,以及7)不确定性量化方法与技术。在本文中,我们调查和报告了人工智能和机器学习(AI/ML)在生态水文学中的潜在应用,重点介绍了AI4ESP研讨会上生态水文学会议的成果,并为该领域的未来研究提供了有远见的展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transferability and explainability of deep learning emulators for regional climate model projections: Perspectives for future applications Classification of ice particle shapes using machine learning on forward light scattering images Convolutional encoding and normalizing flows: a deep learning approach for offshore wind speed probabilistic forecasting in the Mediterranean Sea Neural networks to find the optimal forcing for offsetting the anthropogenic climate change effects Machine Learning Approach for Spatiotemporal Multivariate Optimization of Environmental Monitoring Sensor Locations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1