Phonon-interference resonance effects in nanoparticles embedded in a matrix

Lei Feng, T. Shiga, Haoxue Han, S. Ju, Y. Kosevich, J. Shiomi
{"title":"Phonon-interference resonance effects in nanoparticles embedded in a matrix","authors":"Lei Feng, T. Shiga, Haoxue Han, S. Ju, Y. Kosevich, J. Shiomi","doi":"10.1103/PHYSREVB.96.220301","DOIUrl":null,"url":null,"abstract":"We report an unambiguous phonon resonance effect originating from germanium nanoparticles embedded in silicon matrix. Our approach features the combination of phonon wave-packet method with atomistic dynamics and finite element method rooted in continuum theory. We find that multimodal phonon resonance, caused by destructive interference of coherent lattice waves propagating through and around the nanoparticle, gives rise to sharp and significant transmittance dips, blocking the lower-end frequency range of phonon transport that is hardly diminished by other nanostructures. The resonance is sensitive to the phonon coherent length, where the finiteness of the wave packet width weakens the transmittance dip even when coherent length is longer than the particle diameter. Further strengthening of transmittance dips are possible by arraying multiple nanoparticles that gives rise to the collective vibrational mode. Finally, it is demonstrated that these resonance effects can significantly reduce thermal conductance in the lower-end frequency range.","PeriodicalId":8424,"journal":{"name":"arXiv: Computational Physics","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVB.96.220301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We report an unambiguous phonon resonance effect originating from germanium nanoparticles embedded in silicon matrix. Our approach features the combination of phonon wave-packet method with atomistic dynamics and finite element method rooted in continuum theory. We find that multimodal phonon resonance, caused by destructive interference of coherent lattice waves propagating through and around the nanoparticle, gives rise to sharp and significant transmittance dips, blocking the lower-end frequency range of phonon transport that is hardly diminished by other nanostructures. The resonance is sensitive to the phonon coherent length, where the finiteness of the wave packet width weakens the transmittance dip even when coherent length is longer than the particle diameter. Further strengthening of transmittance dips are possible by arraying multiple nanoparticles that gives rise to the collective vibrational mode. Finally, it is demonstrated that these resonance effects can significantly reduce thermal conductance in the lower-end frequency range.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
嵌入在基质中的纳米颗粒中的声子干涉共振效应
我们报告了一个明确的声子共振效应起源于锗纳米颗粒嵌入硅基体。我们的方法将声子波包方法与原子动力学和基于连续介质理论的有限元方法相结合。我们发现,多模态声子共振是由穿过纳米粒子和围绕纳米粒子传播的相干晶格波的破坏性干涉引起的,导致透光率急剧下降,阻塞了其他纳米结构几乎不会减弱的声子传输的低端频率范围。共振对声子相干长度很敏感,即使相干长度大于粒子直径,波包宽度的有限性也会减弱透射率的下降。进一步加强透射率下降是可能的,通过排列多个纳米粒子,产生集体振动模式。最后,证明了这些共振效应可以显著降低低端频率范围内的热导率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling and computation for non-equilibrium gas dynamics: Beyond single relaxation time kinetic models Space-time computation and visualization of the electromagnetic fields and potentials generated by moving point charges Sparse Gaussian process potentials: Application to lithium diffusivity in superionic conducting solid electrolytes Reduced ionic diffusion by the dynamic electron–ion collisions in warm dense hydrogen HL-LHC Computing Review: Common Tools and Community Software
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1