The Innovative Research on Sustainable Microgrid Artwork Design Based on Regression Analysis and Multi-Objective Optimization

Shuang Chang, Dian Liu, Bahram Dehghan
{"title":"The Innovative Research on Sustainable Microgrid Artwork Design Based on Regression Analysis and Multi-Objective Optimization","authors":"Shuang Chang, Dian Liu, Bahram Dehghan","doi":"10.3390/systems11070354","DOIUrl":null,"url":null,"abstract":"One of the most vital issues in electrical systems involves optimally operating microgrids (MGs) using demand-side management (DSM). A DSM program lowers utility operational costs in one sense but also needs policies that encourage financial incentives in the other. The present study formulates the optimum functioning of MGs using DSM in the form of a problem of optimization. DSM considers load shifting to be a viable option. There are operational limitations and executive limitations that affect the problem, and its objective function aims at minimizing the overall operational prices of the grid and the load-shifting prices. The major problem has been solved using an improved butterfly optimization scheme. Furthermore, the suggested technique was tested in various case studies that consider types of generation unit, load types, unit uncertainties, grid sharing, and energy costs. A comparison was made between the suggested scheme and various algorithms on the IEEE 33-bus network to demonstrate the proficiency of the suggested scheme, showing that it lowered prices by 57%.","PeriodicalId":52858,"journal":{"name":"syst mt`lyh","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"syst mt`lyh","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/systems11070354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most vital issues in electrical systems involves optimally operating microgrids (MGs) using demand-side management (DSM). A DSM program lowers utility operational costs in one sense but also needs policies that encourage financial incentives in the other. The present study formulates the optimum functioning of MGs using DSM in the form of a problem of optimization. DSM considers load shifting to be a viable option. There are operational limitations and executive limitations that affect the problem, and its objective function aims at minimizing the overall operational prices of the grid and the load-shifting prices. The major problem has been solved using an improved butterfly optimization scheme. Furthermore, the suggested technique was tested in various case studies that consider types of generation unit, load types, unit uncertainties, grid sharing, and energy costs. A comparison was made between the suggested scheme and various algorithms on the IEEE 33-bus network to demonstrate the proficiency of the suggested scheme, showing that it lowered prices by 57%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于回归分析和多目标优化的可持续微电网艺术品设计创新研究
电力系统中最重要的问题之一涉及使用需求侧管理(DSM)优化运行微电网(mg)。DSM项目一方面降低了公用事业的运营成本,但另一方面也需要鼓励财政激励的政策。本研究以最优化问题的形式阐述了使用DSM的mg的最优功能。帝斯曼认为负荷转移是一个可行的选择。影响问题的有运行限制和执行限制,其目标函数是使电网的总体运行价格和负荷转移价格最小。采用改进的蝶形优化方案解决了主要问题。此外,建议的技术在考虑发电机组类型、负荷类型、机组不确定性、电网共享和能源成本的各种案例研究中进行了测试。将所提出的方案与IEEE 33总线网络上的各种算法进行了比较,证明了所提出方案的熟练性,表明其降低了57%的价格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
9 weeks
期刊最新文献
Optimal Government Subsidy Decision and Its Impact on Sustainable Development of a Closed-Loop Supply Chain An Emotional Design Model for Future Smart Product Based on Grounded Theory Evolution Mechanism of Public-Private Partnership Project Trust from the Perspective of the Supply Chain Derivation of Optimal Operation Factors of Anaerobic Digesters through Artificial Neural Network Technology An Industrial Case Study on the Monitoring and Maintenance Service System for a Robot-Driven Polishing Service System under Industry 4.0 Contexts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1