Peripheral nerve regeneration by thiolated chitosan hydrogel containing Taurine: In vitro and in vivo study

IF 2.1 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Bioactive and Compatible Polymers Pub Date : 2022-03-01 DOI:10.1177/08839115221085736
Arian Ehterami, Nariman Rezaei kolarijani, Simin Nazarnezhad, M. Alizadeh, Alireza Masoudi, M. Salehi
{"title":"Peripheral nerve regeneration by thiolated chitosan hydrogel containing Taurine: In vitro and in vivo study","authors":"Arian Ehterami, Nariman Rezaei kolarijani, Simin Nazarnezhad, M. Alizadeh, Alireza Masoudi, M. Salehi","doi":"10.1177/08839115221085736","DOIUrl":null,"url":null,"abstract":"About 2.8% of trauma sick persons hurt from peripheral nerve damages, thus, numerous approaches are using to improve peripheral nerve regeneration. In the current study, the efficacy of several dosages of Taurine for peripheral nerve regeneration was evaluated. About 0.1%, 1%, and 10% (w/w) of Taurine were added into thiolated chitosan hydrogel and its features including morphology, swelling properties, weight loss, hemo-, and cytocompatibility were assessed. Hydrogels’ functionality was evaluated by injecting them into the crushed sciatic nerve of rats by using walking-foot-print analysis, Hot plate latency test, gastrocnemius muscle wet weight loss, and histopathological evaluation. Results demonstrated that the average pore size is in the area of 30–40 μm with interconnected pores and their weight loss was around 70% after 7 days. Results of blood compatibility and the MTT tests confirmed the biocompatibility of hydrogels. In vivo study illustrate thiolated Chitosan/Taurine hydrogels especially hydrogel includes 1% of Taurine enhanced sciatic nerve regeneration. In conclusion, Taurine can be used as a feasible treatment for peripheral nerve regeneration.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"79 3 1","pages":"85 - 97"},"PeriodicalIF":2.1000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioactive and Compatible Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08839115221085736","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

About 2.8% of trauma sick persons hurt from peripheral nerve damages, thus, numerous approaches are using to improve peripheral nerve regeneration. In the current study, the efficacy of several dosages of Taurine for peripheral nerve regeneration was evaluated. About 0.1%, 1%, and 10% (w/w) of Taurine were added into thiolated chitosan hydrogel and its features including morphology, swelling properties, weight loss, hemo-, and cytocompatibility were assessed. Hydrogels’ functionality was evaluated by injecting them into the crushed sciatic nerve of rats by using walking-foot-print analysis, Hot plate latency test, gastrocnemius muscle wet weight loss, and histopathological evaluation. Results demonstrated that the average pore size is in the area of 30–40 μm with interconnected pores and their weight loss was around 70% after 7 days. Results of blood compatibility and the MTT tests confirmed the biocompatibility of hydrogels. In vivo study illustrate thiolated Chitosan/Taurine hydrogels especially hydrogel includes 1% of Taurine enhanced sciatic nerve regeneration. In conclusion, Taurine can be used as a feasible treatment for peripheral nerve regeneration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含牛磺酸硫代壳聚糖水凝胶再生周围神经的体外和体内研究
约2.8%的外伤患者是由周围神经损伤引起的,因此,有许多方法被用来改善周围神经的再生。在目前的研究中,评估了几种剂量的牛磺酸对周围神经再生的功效。分别在巯基壳聚糖水凝胶中加入0.1%、1%和10% (w/w)的牛磺酸,并对其形态、溶胀性能、减重性能、血细胞相容性和细胞相容性进行评价。通过步行足迹分析、热板潜伏期试验、腓肠肌湿减重和组织病理学评价,将水凝胶注射于破碎的大鼠坐骨神经,评价水凝胶的功能。结果表明:平均孔径在30 ~ 40 μm之间,孔隙相互连通,7 d后失重率约为70%;血液相容性和MTT试验结果证实了水凝胶的生物相容性。体内研究表明,巯基壳聚糖/牛磺酸水凝胶,特别是含有1%牛磺酸的水凝胶,可促进坐骨神经再生。结论:牛磺酸可作为周围神经再生的一种可行的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Bioactive and Compatible Polymers
Journal of Bioactive and Compatible Polymers 工程技术-材料科学:生物材料
CiteScore
3.50
自引率
0.00%
发文量
27
审稿时长
2 months
期刊介绍: The use and importance of biomedical polymers, especially in pharmacology, is growing rapidly. The Journal of Bioactive and Compatible Polymers is a fully peer-reviewed scholarly journal that provides biomedical polymer scientists and researchers with new information on important advances in this field. Examples of specific areas of interest to the journal include: polymeric drugs and drug design; polymeric functionalization and structures related to biological activity or compatibility; natural polymer modification to achieve specific biological activity or compatibility; enzyme modelling by polymers; membranes for biological use; liposome stabilization and cell modeling. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Textile waste-based biosensors for medical monitoring Gellan gum as a promising transplantation carrier for differentiated progenitor cells in ophthalmic therapies Sport technology in combination with neural guidance channels loaded with Inula helenium extract for peripheral nervous system repair Dual drug release profiles of salicylate-based polymers and encapsulated chlorhexidine as potential periodontitis treatments Synthesis of pH-sensitive polymeric micelle drug carries for potential cancer chemotherapy applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1