Ransomware Attacks Threat Modeling Using Bayesian Network

Sulistiadi, Muhammad Salman
{"title":"Ransomware Attacks Threat Modeling Using Bayesian Network","authors":"Sulistiadi, Muhammad Salman","doi":"10.31849/digitalzone.v14i1.13788","DOIUrl":null,"url":null,"abstract":"Ransomware is a dangerous malware that blocks access to data through encryption, and it exploits device vulnerabilities to perform chain attacks from one system to another. This study results in modeling the threat of ransomware attacks using Bayesian Network. The structure of the model is created using device vulnerabilities that can be exploited. As the basis for calculating the probability of the model, the EPSS vulnerability score is used. The risk exposure rating is calculated through the joint probability distribution formulation based on attack scenarios. Our model shows that ransomware attacks are most likely to exploit the chain of vulnerabilities CVE-2021-26855, CVE-2021-26857, CVE-2021-27065, CVE-2021-36942, and CVE-2017-0144 which has a probability value of 0.046534. In addition, the use of the EPSS also makes the risk assessment more factual, accurate, and effective. The threat modeling method can help in identifying ransomware attacks through a chain of vulnerabilities, making risk assessment more precise. \n ","PeriodicalId":33266,"journal":{"name":"Digital Zone Jurnal Teknologi Informasi dan Komunikasi","volume":"87 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Zone Jurnal Teknologi Informasi dan Komunikasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31849/digitalzone.v14i1.13788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ransomware is a dangerous malware that blocks access to data through encryption, and it exploits device vulnerabilities to perform chain attacks from one system to another. This study results in modeling the threat of ransomware attacks using Bayesian Network. The structure of the model is created using device vulnerabilities that can be exploited. As the basis for calculating the probability of the model, the EPSS vulnerability score is used. The risk exposure rating is calculated through the joint probability distribution formulation based on attack scenarios. Our model shows that ransomware attacks are most likely to exploit the chain of vulnerabilities CVE-2021-26855, CVE-2021-26857, CVE-2021-27065, CVE-2021-36942, and CVE-2017-0144 which has a probability value of 0.046534. In addition, the use of the EPSS also makes the risk assessment more factual, accurate, and effective. The threat modeling method can help in identifying ransomware attacks through a chain of vulnerabilities, making risk assessment more precise.  
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于贝叶斯网络的勒索软件攻击威胁建模
勒索软件是一种危险的恶意软件,它通过加密阻止对数据的访问,并利用设备漏洞从一个系统到另一个系统执行链式攻击。本研究使用贝叶斯网络对勒索软件攻击的威胁进行建模。模型的结构是使用可被利用的设备漏洞创建的。使用EPSS漏洞评分作为计算模型概率的基础。通过基于攻击场景的联合概率分布公式计算风险暴露等级。我们的模型显示,勒索软件攻击最有可能利用漏洞链CVE-2021-26855、CVE-2021-26857、CVE-2021-27065、CVE-2021-36942和CVE-2017-0144,其概率值为0.046534。此外,EPSS的使用也使风险评估更加真实、准确和有效。威胁建模方法可以通过一系列漏洞帮助识别勒索软件攻击,使风险评估更加精确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
14 weeks
期刊最新文献
Analisis sentimen masyarakat terhadap informasi penerapan PPN atas renovasi dan membangun rumah sendiri pada media sosial youtube dengan metode svm dan naive bayes Simulasi Rancangan Smart Home System Menggunakan Cisco Packet Tracer Analisis kejahatan phising pada sektor e-commerce di marketplace shopee Combination of AHP and SMART Methods in Determining Recipients of Direct Village Fund Cash Assistance Fuzzy Inference System for The Risks Pregnancy Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1