Wajdi Halabi, Daniel N. Smith, J. Hill, Jason W. Anderson, Ken E. Kennedy, Brandon Posey, Linh Ngo, A. Apon
{"title":"Viability of Azure IoT Hub for Processing High Velocity Large Scale IoT Data","authors":"Wajdi Halabi, Daniel N. Smith, J. Hill, Jason W. Anderson, Ken E. Kennedy, Brandon Posey, Linh Ngo, A. Apon","doi":"10.1145/3447545.3451187","DOIUrl":null,"url":null,"abstract":"We utilize the Clemson supercomputer to generate a massive workload for testing the performance of Microsoft Azure IoT Hub. The workload emulates sensor data from a large manufacturing facility. We study the effects of message frequency, distribution, and size on round-trip latency for different IoT Hub configurations. Significant variation in latency occurs when the system exceeds IoT Hub specifications. The results are predictable and well-behaved for a well-engineered system and can meet soft real-time deadlines.","PeriodicalId":10596,"journal":{"name":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447545.3451187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We utilize the Clemson supercomputer to generate a massive workload for testing the performance of Microsoft Azure IoT Hub. The workload emulates sensor data from a large manufacturing facility. We study the effects of message frequency, distribution, and size on round-trip latency for different IoT Hub configurations. Significant variation in latency occurs when the system exceeds IoT Hub specifications. The results are predictable and well-behaved for a well-engineered system and can meet soft real-time deadlines.