{"title":"Evaluation of the residence time distribution (RTD) for flow in ducts with velocity profile of two independent variables","authors":"M. Meibodi","doi":"10.30492/IJCCE.2021.130950.4228","DOIUrl":null,"url":null,"abstract":"The correct information on RTD can help in system design and evaluation. The RTD corresponding to the velocity profile is known only for certain cases, where the velocity profile depends on one coordinate only. In this research, a general procedure for derivation of RTD corresponding to a known velocity profile is introduced. The RTD of laminar flows in different ducts as elliptic, equilateral triangular, moon-shaped and rectangular ducts are derived. Also, it is shown that the final RTD for laminar flow in any duct, can be estimated using relation E(θ) = K θmin/θn that is similar to laminar flow in the pipe, with their own dimensionless minimum time, , where is defined as the required time for traveling the duct with the maximum velocity in unit of the space-time. The values of K and n is calculated to meet the condition of . Besides, the values of for different cross-sections are studied. The results show that the RTD of elliptic ducts is precisely similar to the pipe flow. In the case of other shape ducts, the proposed model shows a suitable estimate of the numerical values. The previously published experimental data and precise analytical solutions agree with the proposed model with an acceptable consistency, except for very little time say θmin < θ < 0.7.","PeriodicalId":14572,"journal":{"name":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","volume":"39 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.30492/IJCCE.2021.130950.4228","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The correct information on RTD can help in system design and evaluation. The RTD corresponding to the velocity profile is known only for certain cases, where the velocity profile depends on one coordinate only. In this research, a general procedure for derivation of RTD corresponding to a known velocity profile is introduced. The RTD of laminar flows in different ducts as elliptic, equilateral triangular, moon-shaped and rectangular ducts are derived. Also, it is shown that the final RTD for laminar flow in any duct, can be estimated using relation E(θ) = K θmin/θn that is similar to laminar flow in the pipe, with their own dimensionless minimum time, , where is defined as the required time for traveling the duct with the maximum velocity in unit of the space-time. The values of K and n is calculated to meet the condition of . Besides, the values of for different cross-sections are studied. The results show that the RTD of elliptic ducts is precisely similar to the pipe flow. In the case of other shape ducts, the proposed model shows a suitable estimate of the numerical values. The previously published experimental data and precise analytical solutions agree with the proposed model with an acceptable consistency, except for very little time say θmin < θ < 0.7.
期刊介绍:
The aim of the Iranian Journal of Chemistry and Chemical Engineering is to foster the growth of educational, scientific and Industrial Research activities among chemists and chemical engineers and to provide a medium for mutual communication and relations between Iranian academia and the industry on the one hand, and the world the scientific community on the other.