{"title":"Wet oxidation of an industrial high concentration pharmaceutical wastewater using hydrogen peroxide as an oxidant","authors":"Xu Zeng, Jun Liu, Jianfu Zhao","doi":"10.1515/jaots-2016-0179","DOIUrl":null,"url":null,"abstract":"Abstract Wet oxidation of an industrial pharmaceutical wastewater with high concentration organic pollutants using hydrogen peroxide as an oxidant was investigated. Experiments were performed in a batch reactor to discuss the effects of reaction temperature, time, the hydrogen peroxide amount and catalyst with COD removal rate as an evaluation index. Results show that the highest COD removal rate, 81.6 %, was achieved at 240 ºC for 60 min with the addition of H2O2 solution 2 mL. The increased B/C value illustrated that the biodegradability of the wastewater improved significantly after the wet oxidation process. Activated carbon acts as a catalyst in this process which can increased the efficiency significantly. Wet hydrogen peroxide oxidation (WHPO) displayed an effective pre-treatment for the high-concentration organic wastewater.","PeriodicalId":14870,"journal":{"name":"Journal of Advanced Oxidation Technologies","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Oxidation Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jaots-2016-0179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Wet oxidation of an industrial pharmaceutical wastewater with high concentration organic pollutants using hydrogen peroxide as an oxidant was investigated. Experiments were performed in a batch reactor to discuss the effects of reaction temperature, time, the hydrogen peroxide amount and catalyst with COD removal rate as an evaluation index. Results show that the highest COD removal rate, 81.6 %, was achieved at 240 ºC for 60 min with the addition of H2O2 solution 2 mL. The increased B/C value illustrated that the biodegradability of the wastewater improved significantly after the wet oxidation process. Activated carbon acts as a catalyst in this process which can increased the efficiency significantly. Wet hydrogen peroxide oxidation (WHPO) displayed an effective pre-treatment for the high-concentration organic wastewater.
期刊介绍:
The Journal of advanced oxidation technologies (AOTs) has been providing an international forum that accepts papers describing basic research and practical applications of these technologies. The Journal has been publishing articles in the form of critical reviews and research papers focused on the science and engineering of AOTs for water, air and soil treatment. Due to the enormous progress in the applications of various chemical and bio-oxidation and reduction processes, the scope of the Journal is now expanded to include submission in these areas so that high quality submission from industry would also be considered for publication. Specifically, the Journal is soliciting submission in the following areas (alphabetical order): -Advanced Oxidation Nanotechnologies -Bio-Oxidation and Reduction Processes -Catalytic Oxidation -Chemical Oxidation and Reduction Processes -Electrochemical Oxidation -Electrohydraulic Discharge, Cavitation & Sonolysis -Electron Beam & Gamma Irradiation -New Photocatalytic Materials and processes -Non-Thermal Plasma -Ozone-based AOTs -Photochemical Degradation Processes -Sub- and Supercritical Water Oxidation -TiO2 Photocatalytic Redox Processes -UV- and Solar Light-based AOTs -Water-Energy (and Food) Nexus of AOTs