Jie Zhang, Licai Yang, Zhonghua Su, Xueqin Mao, Kan Luo, Chengyu Liu
{"title":"Photoplethysmogram Signal Quality Assessment Using Support Vector Machine and Multi-Feature Fusion","authors":"Jie Zhang, Licai Yang, Zhonghua Su, Xueqin Mao, Kan Luo, Chengyu Liu","doi":"10.1166/JMIHI.2018.2530","DOIUrl":null,"url":null,"abstract":"Background: Noise is unavoidable in the physiological signal measurement system. Poor quality signals can affect the results of analysis and disable the following clinical diagnosis. Thus, it is necessary to perform signal quality assessment before we interpreting the signal.\n Objective: In this work, we describe a method combing support vector machine (SVM) and multi-feature fusion for assessing the signal quality of pulsatile waveforms, concentrating on the photoplethysmogram (PPG). Methods: PPG signals from 53 healthy volunteers were recorded. Each\n had a 5 min length. Signal quality in each heart beat was manual annotated by clinical expert, and then the signal quality in 5 s episode was automatically calculated according to the results from each beat segments, resulting in a total of 13,294 5-s PPG segments. Then a SVM was trained to\n classify clean/noisy PPG recordings by inputting a set of twelve signal quality features. Further experiments were carried out to verify the proposed SVM based signal quality classifier method. Results: An average accuracy of 87.90%, a sensitivity of 88.10% and a specificity of 87.66%\n were found on the 10-fold cross validation. Conclusions: The signal quality of PPGs can be accurately classified by using the proposed method.","PeriodicalId":49032,"journal":{"name":"Journal of Medical Imaging and Health Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/JMIHI.2018.2530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Background: Noise is unavoidable in the physiological signal measurement system. Poor quality signals can affect the results of analysis and disable the following clinical diagnosis. Thus, it is necessary to perform signal quality assessment before we interpreting the signal.
Objective: In this work, we describe a method combing support vector machine (SVM) and multi-feature fusion for assessing the signal quality of pulsatile waveforms, concentrating on the photoplethysmogram (PPG). Methods: PPG signals from 53 healthy volunteers were recorded. Each
had a 5 min length. Signal quality in each heart beat was manual annotated by clinical expert, and then the signal quality in 5 s episode was automatically calculated according to the results from each beat segments, resulting in a total of 13,294 5-s PPG segments. Then a SVM was trained to
classify clean/noisy PPG recordings by inputting a set of twelve signal quality features. Further experiments were carried out to verify the proposed SVM based signal quality classifier method. Results: An average accuracy of 87.90%, a sensitivity of 88.10% and a specificity of 87.66%
were found on the 10-fold cross validation. Conclusions: The signal quality of PPGs can be accurately classified by using the proposed method.
期刊介绍:
Journal of Medical Imaging and Health Informatics (JMIHI) is a medium to disseminate novel experimental and theoretical research results in the field of biomedicine, biology, clinical, rehabilitation engineering, medical image processing, bio-computing, D2H2, and other health related areas. As an example, the Distributed Diagnosis and Home Healthcare (D2H2) aims to improve the quality of patient care and patient wellness by transforming the delivery of healthcare from a central, hospital-based system to one that is more distributed and home-based. Different medical imaging modalities used for extraction of information from MRI, CT, ultrasound, X-ray, thermal, molecular and fusion of its techniques is the focus of this journal.