Dominance of mixed ether/ester, intact polar membrane lipids in five species of the order Rubrobacterales: Another group of bacteria not obeying the “lipid divide”
Jaap S. Sinninghe Damsté , W. Irene C. Rijpstra , Katharina J. Huber , Luciana Albuquerque , Conceição Egas , Nicole J. Bale
{"title":"Dominance of mixed ether/ester, intact polar membrane lipids in five species of the order Rubrobacterales: Another group of bacteria not obeying the “lipid divide”","authors":"Jaap S. Sinninghe Damsté , W. Irene C. Rijpstra , Katharina J. Huber , Luciana Albuquerque , Conceição Egas , Nicole J. Bale","doi":"10.1016/j.syapm.2023.126404","DOIUrl":null,"url":null,"abstract":"<div><p>The composition of the core lipids and intact polar lipids (IPLs) of five <em>Rubrobacter</em> species was examined. Methylated (ω-4) fatty acids (FAs) characterized the core lipids of <em>Rubrobacter radiotolerans</em>, <em>R. xylanophilus</em> and <em>R. bracarensis</em>. In contrast, <em>R. calidifluminis</em> and <em>R. naiadicus</em> lacked ω-4 methyl FAs but instead contained abundant (i.e., 34–41 % of the core lipids) ω-cyclohexyl FAs not reported before in the order <em>Rubrobacterales</em>. Their genomes contained an almost complete operon encoding proteins enabling production of cyclohexane carboxylic acid CoA thioester, which acts as a building block for ω-cyclohexyl FAs in other bacteria. Hence, the most plausible explanation for the biosynthesis of these cyclic FAs in <em>R. calidifluminis</em> and <em>R. naiadicus</em> is a recent acquisition of this operon. All strains contained 1-O-alkyl glycerol ether lipids in abundance (up to 46 % of the core lipids), in line with the dominance (>90 %) of mixed ether/ester IPLs with a variety of polar headgroups. The IPL head group distribution of <em>R. calidifluminis</em> and <em>R. naiadicus</em> differed, e.g. they lacked a novel IPL tentatively assigned as phosphothreoninol. The genomes of all five <em>Rubrobacter</em> species contained a putative operon encoding the synthesis of the 1-O-alkyl glycerol phosphate, the presumed building block of mixed ether/ester IPLs, which shows some resemblance with an operon enabling ether lipid production in various other aerobic bacteria but requires more study. The uncommon dominance of mixed ether/ester IPLs in <em>Rubrobacter</em> species exemplifies our recent growing awareness that the lipid divide between archaea and bacteria/eukaryotes is not as clear cut as previously thought.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723202023000139","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2
Abstract
The composition of the core lipids and intact polar lipids (IPLs) of five Rubrobacter species was examined. Methylated (ω-4) fatty acids (FAs) characterized the core lipids of Rubrobacter radiotolerans, R. xylanophilus and R. bracarensis. In contrast, R. calidifluminis and R. naiadicus lacked ω-4 methyl FAs but instead contained abundant (i.e., 34–41 % of the core lipids) ω-cyclohexyl FAs not reported before in the order Rubrobacterales. Their genomes contained an almost complete operon encoding proteins enabling production of cyclohexane carboxylic acid CoA thioester, which acts as a building block for ω-cyclohexyl FAs in other bacteria. Hence, the most plausible explanation for the biosynthesis of these cyclic FAs in R. calidifluminis and R. naiadicus is a recent acquisition of this operon. All strains contained 1-O-alkyl glycerol ether lipids in abundance (up to 46 % of the core lipids), in line with the dominance (>90 %) of mixed ether/ester IPLs with a variety of polar headgroups. The IPL head group distribution of R. calidifluminis and R. naiadicus differed, e.g. they lacked a novel IPL tentatively assigned as phosphothreoninol. The genomes of all five Rubrobacter species contained a putative operon encoding the synthesis of the 1-O-alkyl glycerol phosphate, the presumed building block of mixed ether/ester IPLs, which shows some resemblance with an operon enabling ether lipid production in various other aerobic bacteria but requires more study. The uncommon dominance of mixed ether/ester IPLs in Rubrobacter species exemplifies our recent growing awareness that the lipid divide between archaea and bacteria/eukaryotes is not as clear cut as previously thought.