A Fast, Provably Accurate Approximation Algorithm for Sparse Principal Component Analysis Reveals Human Genetic Variation Across the World.

Agniva Chowdhury, Aritra Bose, Samson Zhou, David P Woodruff, Petros Drineas
{"title":"A Fast, Provably Accurate Approximation Algorithm for Sparse Principal Component Analysis Reveals Human Genetic Variation Across the World.","authors":"Agniva Chowdhury, Aritra Bose, Samson Zhou, David P Woodruff, Petros Drineas","doi":"10.1007/978-3-031-04749-7_6","DOIUrl":null,"url":null,"abstract":"<p><p>Principal component analysis (PCA) is a widely used dimensionality reduction technique in machine learning and multivariate statistics. To improve the interpretability of PCA, various approaches to obtain sparse principal direction loadings have been proposed, which are termed Sparse Principal Component Analysis (SPCA). In this paper, we present ThreSPCA, a provably accurate algorithm based on thresholding the Singular Value Decomposition for the SPCA problem, without imposing any restrictive assumptions on the input covariance matrix. Our thresholding algorithm is conceptually simple; much faster than current state-of-the-art; and performs well in practice. When applied to genotype data from the 1000 Genomes Project, ThreSPCA is faster than previous benchmarks, at least as accurate, and leads to a set of interpretable biomarkers, revealing genetic diversity across the world.</p>","PeriodicalId":74675,"journal":{"name":"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )","volume":"13278 ","pages":"86-106"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9836035/pdf/nihms-1804098.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-04749-7_6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Principal component analysis (PCA) is a widely used dimensionality reduction technique in machine learning and multivariate statistics. To improve the interpretability of PCA, various approaches to obtain sparse principal direction loadings have been proposed, which are termed Sparse Principal Component Analysis (SPCA). In this paper, we present ThreSPCA, a provably accurate algorithm based on thresholding the Singular Value Decomposition for the SPCA problem, without imposing any restrictive assumptions on the input covariance matrix. Our thresholding algorithm is conceptually simple; much faster than current state-of-the-art; and performs well in practice. When applied to genotype data from the 1000 Genomes Project, ThreSPCA is faster than previous benchmarks, at least as accurate, and leads to a set of interpretable biomarkers, revealing genetic diversity across the world.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏主成分分析的快速、可证明精确的近似算法揭示了全球人类基因变异
主成分分析(PCA)是机器学习和多元统计中广泛使用的一种降维技术。为了提高 PCA 的可解释性,人们提出了各种获取稀疏主方向载荷的方法,这些方法被称为稀疏主成分分析(SPCA)。在本文中,我们提出了 ThreSPCA,这是一种基于阈值奇异值分解的可证明的精确算法,用于解决 SPCA 问题,而无需对输入协方差矩阵施加任何限制性假设。我们的阈值算法概念简单,比目前最先进的算法快得多,而且在实践中表现良好。将 ThreSPCA 应用于 "1000 基因组计划 "的基因型数据时,其速度比以前的基准算法更快,准确性至少与之相当,而且还产生了一组可解释的生物标记,揭示了全球的遗传多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure Discovery of Genetic Relatives across Large-Scale and Distributed Genomic Datasets. Research in Computational Molecular Biology: 27th Annual International Conference, RECOMB 2023, Istanbul, Turkey, April 16–19, 2023, Proceedings Comparative Analysis of Alternative Splicing Events in Foliar Transcriptomes of Potato Plants Inoculated with Phytophthora Infestans Identification and Bioinformatics Analysis of TCP Family Genes in Tree Peony Computational Molecular Biology Interdisciplinary Technological Integration and New Advances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1