Performance evaluation for distributionally robust optimization with binary entries

S. Ohmori, K. Yoshimoto
{"title":"Performance evaluation for distributionally robust optimization with binary entries","authors":"S. Ohmori, K. Yoshimoto","doi":"10.11121/ijocta.01.2021.00911","DOIUrl":null,"url":null,"abstract":"We consider the data-driven stochastic programming problem with binary entries where the probability of existence of each entry is not known, instead realization of data is provided. We applied the distributionally robust optimization technique to minimize the worst-case expected cost taken over the ambiguity set based on the Kullback-Leibler divergence. We investigate the out-of-sample performance of the resulting optimal decision and analyze its dependence on the sparsity of the problem.","PeriodicalId":37369,"journal":{"name":"International Journal of Optimization and Control: Theories and Applications","volume":"9 1","pages":"1-9"},"PeriodicalIF":2.2000,"publicationDate":"2020-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optimization and Control: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11121/ijocta.01.2021.00911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the data-driven stochastic programming problem with binary entries where the probability of existence of each entry is not known, instead realization of data is provided. We applied the distributionally robust optimization technique to minimize the worst-case expected cost taken over the ambiguity set based on the Kullback-Leibler divergence. We investigate the out-of-sample performance of the resulting optimal decision and analyze its dependence on the sparsity of the problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二值项分布鲁棒优化的性能评价
本文研究了数据驱动的二元项目随机规划问题,其中每个项目的存在概率未知,而是提供了数据的实现。基于Kullback-Leibler散度,应用分布鲁棒优化技术最小化模糊集的最坏情况期望代价。我们研究了所得到的最优决策的样本外性能,并分析了其对问题稀疏性的依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
6.20%
发文量
13
审稿时长
16 weeks
期刊最新文献
Bin packing problem with restricted item fragmentation: Assignment of jobs in multi-product assembly environment with overtime Scheduling of distributed additive manufacturing machines considering carbon emissions The effect of fractional order mathematical modelling for examination of academic achievement in schools with stochastic behaviors The solvability of the optimal control problem for a nonlinear Schrödinger equation Regional enlarged controllability of a fractional derivative of an output linear system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1