{"title":"Low-temperature anomalies and nanosized levels formation of self-organized structures in the non-crystalline solids of As(Ge)-S(Se) systems","authors":"M. Mar’yan, N. Yurkovych, V. Šebeň","doi":"10.15330/pcss.24.2.367-373","DOIUrl":null,"url":null,"abstract":"The relationship between low-temperature anomalies of physical and chemical properties and the formation of self-organized structures in non-crystalline solids of the As(Ge)-S(Se) systems is discussed. Obtained temperature dependences for the specific heat capacity and coefficient of linear expansion in the temperature domain , detailing the linear and nonlinear contributions. The influence of the obtaining conditions of non-crystalline solids on the low-temperature behavior of physico-chemical properties and the change in the ratios of various contributions and temperature intervals is considered. The correlation and common features of the formation of self-organized structures of non-crystalline materials in the region of low temperatures and softening temperatures, manifested in the presence of nanolevels of structuring, are analyzed.","PeriodicalId":20137,"journal":{"name":"Physics and Chemistry of Solid State","volume":"68 9 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Solid State","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/pcss.24.2.367-373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
The relationship between low-temperature anomalies of physical and chemical properties and the formation of self-organized structures in non-crystalline solids of the As(Ge)-S(Se) systems is discussed. Obtained temperature dependences for the specific heat capacity and coefficient of linear expansion in the temperature domain , detailing the linear and nonlinear contributions. The influence of the obtaining conditions of non-crystalline solids on the low-temperature behavior of physico-chemical properties and the change in the ratios of various contributions and temperature intervals is considered. The correlation and common features of the formation of self-organized structures of non-crystalline materials in the region of low temperatures and softening temperatures, manifested in the presence of nanolevels of structuring, are analyzed.