Introducing randomness in the analysis of chemical reactions: An analysis based on random differential equations and probability density functions

IF 0.9 Q3 MATHEMATICS, APPLIED Computational and Mathematical Methods Pub Date : 2020-12-11 DOI:10.1002/cmm4.1141
Juan-Carlos Cortés, Ana Navarro-Quiles, José-Vicente Romero, María-Dolores Roselló
{"title":"Introducing randomness in the analysis of chemical reactions: An analysis based on random differential equations and probability density functions","authors":"Juan-Carlos Cortés,&nbsp;Ana Navarro-Quiles,&nbsp;José-Vicente Romero,&nbsp;María-Dolores Roselló","doi":"10.1002/cmm4.1141","DOIUrl":null,"url":null,"abstract":"<p>In this work we consider a particular randomized kinetic model for reaction–deactivation of hydrogen peroxide decomposition. We apply the random variable transformation technique to obtain the first probability density function of the solution stochastic process under general conditions. From the first probability density function, we can obtain fundamental statistical information, such as the mean and the variance of the solution, at every instant time. The transformation considered in the application of the random variable transformation technique is not unique. Then, the first probability density function can take different expressions, although essentially equivalent in terms of computing probabilistic information. To motivate this fact, we consider in our analysis two different mappings. Several numerical examples show the capability of our approach and of the obtained results as well. We show, through simulations, that the choice of the transformation, that permits computing the first probability density function, is a crucial issue regarding the computational time.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmm4.1141","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

Abstract

In this work we consider a particular randomized kinetic model for reaction–deactivation of hydrogen peroxide decomposition. We apply the random variable transformation technique to obtain the first probability density function of the solution stochastic process under general conditions. From the first probability density function, we can obtain fundamental statistical information, such as the mean and the variance of the solution, at every instant time. The transformation considered in the application of the random variable transformation technique is not unique. Then, the first probability density function can take different expressions, although essentially equivalent in terms of computing probabilistic information. To motivate this fact, we consider in our analysis two different mappings. Several numerical examples show the capability of our approach and of the obtained results as well. We show, through simulations, that the choice of the transformation, that permits computing the first probability density function, is a crucial issue regarding the computational time.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在化学反应分析中引入随机性:基于随机微分方程和概率密度函数的分析
在这项工作中,我们考虑了过氧化氢分解反应失活的一个特定的随机动力学模型。应用随机变量变换技术,得到了一般条件下解随机过程的第一概率密度函数。从第一个概率密度函数,我们可以得到基本的统计信息,如在每个瞬间解的均值和方差。在应用随机变量变换技术时所考虑的变换并不是唯一的。然后,第一个概率密度函数可以采用不同的表达式,尽管在计算概率信息方面本质上是等效的。为了激发这一事实,我们在分析中考虑了两个不同的映射。算例表明了本文方法和所得结果的有效性。我们通过模拟表明,选择允许计算第一个概率密度函数的变换是计算时间的关键问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
A Mathematical Analysis of the Impact of Immature Mosquitoes on the Transmission Dynamics of Malaria Parameter-Uniform Convergent Numerical Approach for Time-Fractional Singularly Perturbed Partial Differential Equations With Large Time Delay Mortality Prediction in COVID-19 Using Time Series and Machine Learning Techniques On the Limitations of Univariate Grey Prediction Models: Findings and Failures Generalized Confidence Interval for the Difference Between Percentiles of Birnbaum–Saunders Distributions and Its Application to PM2.5 in Thailand
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1