Vanessa Scarapicchia , Stuart MacDonald , Jodie R. Gawryluk
{"title":"The relationship between cardiovascular risk and lifestyle activities on hippocampal volumes in normative aging","authors":"Vanessa Scarapicchia , Stuart MacDonald , Jodie R. Gawryluk","doi":"10.1016/j.nbas.2022.100033","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Despite the life-course perspective of popular aging models, few studies on healthy aging to date have examined both younger and older adulthood. The current study examined how cumulative vascular risk factors and self-reported levels of physical, social, and cognitive activity are associated with differences in hippocampal volumes in healthy younger and older adults.</p></div><div><h3>Methods</h3><p>34 neurologically healthy participants were separated into two age cohorts: a younger adult group (age 25–35, n = 17) and an older adult group (age 65–82, n = 17). Participants underwent a 3 T T1 MRI and completed a series of questionnaires. Voxel-based morphometry examined whole-brain grey matter density differences between groups. Hippocampal volumes were computed. Analyses examined the association between hippocampal volumes, cumulative vascular risk, and self-reported levels of physical, social, and cognitive activity, both within and across groups.</p></div><div><h3>Results</h3><p>Between-group comparisons revealed greater cortical atrophy in older relative to young adults in regions including the left and right hippocampus and temporal fusiform cortex. Across-group analyses revealed a significant negative association between cardiovascular risk scores and bilateral hippocampal volumes across age groups. A significant negative association was identified between frequency of social activities and bilateral hippocampal volumes in older adults only. No significant associations were found between left or right hippocampal volumes and total, cognitive, or physical activities in both within- and across-group analyses.</p></div><div><h3>Conclusion</h3><p>Greater cumulative vascular risk is associated with smaller hippocampal volumes across age cohorts. Findings suggest that social activities with low cognitive load may not be beneficial to structural brain outcomes in older age.</p></div>","PeriodicalId":72131,"journal":{"name":"Aging brain","volume":"2 ","pages":"Article 100033"},"PeriodicalIF":1.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f7/5a/main.PMC9999441.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging brain","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589958922000056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Despite the life-course perspective of popular aging models, few studies on healthy aging to date have examined both younger and older adulthood. The current study examined how cumulative vascular risk factors and self-reported levels of physical, social, and cognitive activity are associated with differences in hippocampal volumes in healthy younger and older adults.
Methods
34 neurologically healthy participants were separated into two age cohorts: a younger adult group (age 25–35, n = 17) and an older adult group (age 65–82, n = 17). Participants underwent a 3 T T1 MRI and completed a series of questionnaires. Voxel-based morphometry examined whole-brain grey matter density differences between groups. Hippocampal volumes were computed. Analyses examined the association between hippocampal volumes, cumulative vascular risk, and self-reported levels of physical, social, and cognitive activity, both within and across groups.
Results
Between-group comparisons revealed greater cortical atrophy in older relative to young adults in regions including the left and right hippocampus and temporal fusiform cortex. Across-group analyses revealed a significant negative association between cardiovascular risk scores and bilateral hippocampal volumes across age groups. A significant negative association was identified between frequency of social activities and bilateral hippocampal volumes in older adults only. No significant associations were found between left or right hippocampal volumes and total, cognitive, or physical activities in both within- and across-group analyses.
Conclusion
Greater cumulative vascular risk is associated with smaller hippocampal volumes across age cohorts. Findings suggest that social activities with low cognitive load may not be beneficial to structural brain outcomes in older age.