Azam Bozorgi, M. Khazaei, Maryam Bozorgi, Z. Jamalpoor
{"title":"Fabrication and characterization of apigenin-loaded chitosan/gelatin membranes for bone tissue engineering applications","authors":"Azam Bozorgi, M. Khazaei, Maryam Bozorgi, Z. Jamalpoor","doi":"10.1177/08839115221149725","DOIUrl":null,"url":null,"abstract":"Fabricating degradable polymer-based membranes has attracted much attention for guided bone regeneration. Chitosan/gelatin (Cs/Gel) composites are among the most known scaffolds with structural similarity to bone matrix and a high potential to support cell attachment and proliferation. Recently, plant-derived phenolic compound apigenin has been identified to direct the osteogenic differentiation of mesenchymal stem cells and retain osteoblast metabolic functions. We incorporated apigenin into Cs/Gel membranes to improve apigenin bioavailability and get proper concentrations for efficient biological activities. Apigenin-loaded Cs/Gel membranes were prepared using a solution casting method with various apigenin contents (0, 10, 25, 50, and 100 µM). Chemical composition, morphological characteristics, swelling behavior, degradation rate, and apigenin release from membranes were evaluated. Saos-2 osteoblasts were cultured on membranes to investigate cell-membrane interaction, proliferation, viability, and mineralization under the osteogenic culture condition. The results showed that membranes had homogeneous and moderate rough surfaces, facilitating osteoblast attachment and expansion. Swelling ratios exceeded 200%, reaching a stable rate in 24 h. Apigenin-loaded membranes degraded slower in vitro. Membranes containing lower apigenin concentrations exhibited a higher cargo release profile over 21 days. Apigenin improved osteoblast proliferation and viability, but the mineralization depended on apigenin dose, with optimized values at low concentrations. These data suggested that Cs/Gel membranes loaded with low apigenin contents improved osteoblast survival, proliferation, and mineralization.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"105 1","pages":"142 - 157"},"PeriodicalIF":2.1000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioactive and Compatible Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08839115221149725","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Fabricating degradable polymer-based membranes has attracted much attention for guided bone regeneration. Chitosan/gelatin (Cs/Gel) composites are among the most known scaffolds with structural similarity to bone matrix and a high potential to support cell attachment and proliferation. Recently, plant-derived phenolic compound apigenin has been identified to direct the osteogenic differentiation of mesenchymal stem cells and retain osteoblast metabolic functions. We incorporated apigenin into Cs/Gel membranes to improve apigenin bioavailability and get proper concentrations for efficient biological activities. Apigenin-loaded Cs/Gel membranes were prepared using a solution casting method with various apigenin contents (0, 10, 25, 50, and 100 µM). Chemical composition, morphological characteristics, swelling behavior, degradation rate, and apigenin release from membranes were evaluated. Saos-2 osteoblasts were cultured on membranes to investigate cell-membrane interaction, proliferation, viability, and mineralization under the osteogenic culture condition. The results showed that membranes had homogeneous and moderate rough surfaces, facilitating osteoblast attachment and expansion. Swelling ratios exceeded 200%, reaching a stable rate in 24 h. Apigenin-loaded membranes degraded slower in vitro. Membranes containing lower apigenin concentrations exhibited a higher cargo release profile over 21 days. Apigenin improved osteoblast proliferation and viability, but the mineralization depended on apigenin dose, with optimized values at low concentrations. These data suggested that Cs/Gel membranes loaded with low apigenin contents improved osteoblast survival, proliferation, and mineralization.
期刊介绍:
The use and importance of biomedical polymers, especially in pharmacology, is growing rapidly. The Journal of Bioactive and Compatible Polymers is a fully peer-reviewed scholarly journal that provides biomedical polymer scientists and researchers with new information on important advances in this field. Examples of specific areas of interest to the journal include: polymeric drugs and drug design; polymeric functionalization and structures related to biological activity or compatibility; natural polymer modification to achieve specific biological activity or compatibility; enzyme modelling by polymers; membranes for biological use; liposome stabilization and cell modeling. This journal is a member of the Committee on Publication Ethics (COPE).