High-energy-density metal nitrides with armchair chains

IF 4.8 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Matter and Radiation at Extremes Pub Date : 2022-05-01 DOI:10.1063/5.0087168
Jianan Yuan, K. Xia, C. Ding, Xiaomeng Wang, Qing Lu, Jian Sun
{"title":"High-energy-density metal nitrides with armchair chains","authors":"Jianan Yuan, K. Xia, C. Ding, Xiaomeng Wang, Qing Lu, Jian Sun","doi":"10.1063/5.0087168","DOIUrl":null,"url":null,"abstract":"Polymeric nitrogen has attracted much attention owing to its possible application as an environmentally safe high-energy-density material. Based on a crystal structure search method accelerated by the use of machine learning and graph theory and on first-principles calculations, we predict a series of metal nitrides with chain-like polynitrogen ( P21-AlN6, P21-GaN6, P-1-YN6, and P4/ mnc-TiN8), all of which are estimated to be energetically stable below 40.8 GPa. Phonon calculations and ab initio molecular dynamics simulations at finite temperature suggest that these nitrides are dynamically stable. We find that the nitrogen in these metal nitrides can polymerize into two types of poly-[Formula: see text] chains, in which the π electrons are either extended or localized. Owing to the presence of the polymerized N4 chains, these metal nitrides can store a large amount of chemical energy, which is estimated to range from 4.50 to 2.71 kJ/g. Moreover, these compounds have high detonation pressures and detonation velocities, exceeding those of conventional explosives such as TNT and HMX.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"51 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0087168","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

Abstract

Polymeric nitrogen has attracted much attention owing to its possible application as an environmentally safe high-energy-density material. Based on a crystal structure search method accelerated by the use of machine learning and graph theory and on first-principles calculations, we predict a series of metal nitrides with chain-like polynitrogen ( P21-AlN6, P21-GaN6, P-1-YN6, and P4/ mnc-TiN8), all of which are estimated to be energetically stable below 40.8 GPa. Phonon calculations and ab initio molecular dynamics simulations at finite temperature suggest that these nitrides are dynamically stable. We find that the nitrogen in these metal nitrides can polymerize into two types of poly-[Formula: see text] chains, in which the π electrons are either extended or localized. Owing to the presence of the polymerized N4 chains, these metal nitrides can store a large amount of chemical energy, which is estimated to range from 4.50 to 2.71 kJ/g. Moreover, these compounds have high detonation pressures and detonation velocities, exceeding those of conventional explosives such as TNT and HMX.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带扶手椅链的高能量密度金属氮化物
高分子氮作为一种环境安全的高能量密度材料,其应用前景备受关注。基于机器学习和图论加速的晶体结构搜索方法和第一性原理计算,我们预测了一系列具有链状多氮的金属氮化物(P21-AlN6, P21-GaN6, P-1-YN6和P4/ mnc-TiN8),所有这些金属氮化物的能量稳定都低于40.8 GPa。声子计算和有限温度下从头算分子动力学模拟表明,这些氮化物是动态稳定的。我们发现这些金属氮化物中的氮可以聚合成两种类型的聚链,其中π电子要么是延伸的,要么是局部的。由于存在聚合的N4链,这些金属氮化物可以储存大量的化学能,估计其范围为4.50至2.71 kJ/g。此外,这些化合物具有高爆压和爆速,超过了TNT和HMX等常规炸药。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matter and Radiation at Extremes
Matter and Radiation at Extremes Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
8.60
自引率
9.80%
发文量
160
审稿时长
15 weeks
期刊介绍: Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.
期刊最新文献
Compact laser wakefield acceleration toward high energy with micro-plasma parabola Hollow ion atomic structure and X-ray emission in dense hot plasmas Exotic compounds of monovalent calcium synthesized at high pressure Experimental measurements of gamma-photon production and estimation of electron/positron production on the PETAL laser facility Benchmark simulations of radiative transfer in participating binary stochastic mixtures in two dimensions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1