{"title":"People Dynamically Update Trust When Interactively Teaching Robots","authors":"V. B. Chi, B. Malle","doi":"10.1145/3568162.3576962","DOIUrl":null,"url":null,"abstract":"Human-robot trust research often measures people's trust in robots in individual scenarios. However, humans may update their trust dynamically as they continuously interact with a robot. In a well-powered study (n = 220), we investigate the trust updating process across a 15-trial interaction. In a novel paradigm, participants act in the role of teacher to a simulated robot on a smartphone-based platform, and we assess trust at multiple levels (momentary trust feelings, perceptions of trustworthiness, and intended reliance). Results reveal that people are highly sensitive to the robot's learning progress trial by trial: they take into account both previous-task performance, current-task difficulty, and cumulative learning across training. More integrative perceptions of robot trustworthiness steadily grow as people gather more evidence from observing robot performance, especially of faster-learning robots. Intended reliance on the robot in novel tasks increased only for faster-learning robots.","PeriodicalId":36515,"journal":{"name":"ACM Transactions on Human-Robot Interaction","volume":"94 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Human-Robot Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3568162.3576962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 5
Abstract
Human-robot trust research often measures people's trust in robots in individual scenarios. However, humans may update their trust dynamically as they continuously interact with a robot. In a well-powered study (n = 220), we investigate the trust updating process across a 15-trial interaction. In a novel paradigm, participants act in the role of teacher to a simulated robot on a smartphone-based platform, and we assess trust at multiple levels (momentary trust feelings, perceptions of trustworthiness, and intended reliance). Results reveal that people are highly sensitive to the robot's learning progress trial by trial: they take into account both previous-task performance, current-task difficulty, and cumulative learning across training. More integrative perceptions of robot trustworthiness steadily grow as people gather more evidence from observing robot performance, especially of faster-learning robots. Intended reliance on the robot in novel tasks increased only for faster-learning robots.
期刊介绍:
ACM Transactions on Human-Robot Interaction (THRI) is a prestigious Gold Open Access journal that aspires to lead the field of human-robot interaction as a top-tier, peer-reviewed, interdisciplinary publication. The journal prioritizes articles that significantly contribute to the current state of the art, enhance overall knowledge, have a broad appeal, and are accessible to a diverse audience. Submissions are expected to meet a high scholarly standard, and authors are encouraged to ensure their research is well-presented, advancing the understanding of human-robot interaction, adding cutting-edge or general insights to the field, or challenging current perspectives in this research domain.
THRI warmly invites well-crafted paper submissions from a variety of disciplines, encompassing robotics, computer science, engineering, design, and the behavioral and social sciences. The scholarly articles published in THRI may cover a range of topics such as the nature of human interactions with robots and robotic technologies, methods to enhance or enable novel forms of interaction, and the societal or organizational impacts of these interactions. The editorial team is also keen on receiving proposals for special issues that focus on specific technical challenges or that apply human-robot interaction research to further areas like social computing, consumer behavior, health, and education.