Analysis and prediction of nutritional requirements using structural properties of metabolic networks and support vector machines.

Takeyuki Tamura, Nils Christian, Kazuhiro Takemoto, O. Ebenhöh, T. Akutsu
{"title":"Analysis and prediction of nutritional requirements using structural properties of metabolic networks and support vector machines.","authors":"Takeyuki Tamura, Nils Christian, Kazuhiro Takemoto, O. Ebenhöh, T. Akutsu","doi":"10.1142/9781848165786_0015","DOIUrl":null,"url":null,"abstract":"Properties of graph representation of genome scale metabolic networks have been extensively studied. However, the relationship between these structural properties and functional properties of the networks are still very unclear. In this paper, we focus on nutritional requirements of organisms as a functional property and study the relationship with structural properties of a graph representation of metabolic networks. In order to examine the relationship, we study to what extent the nutritional requirements can be predicted by using support vector machines from structural properties, which include degree exponent, edge density, clustering coefficient, degree centrality, closeness centrality, betweenness centrality and eigenvector centrality. Furthermore, we study which properties are influential to the nutritional requirements.","PeriodicalId":73143,"journal":{"name":"Genome informatics. International Conference on Genome Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome informatics. International Conference on Genome Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781848165786_0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Properties of graph representation of genome scale metabolic networks have been extensively studied. However, the relationship between these structural properties and functional properties of the networks are still very unclear. In this paper, we focus on nutritional requirements of organisms as a functional property and study the relationship with structural properties of a graph representation of metabolic networks. In order to examine the relationship, we study to what extent the nutritional requirements can be predicted by using support vector machines from structural properties, which include degree exponent, edge density, clustering coefficient, degree centrality, closeness centrality, betweenness centrality and eigenvector centrality. Furthermore, we study which properties are influential to the nutritional requirements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用代谢网络和支持向量机的结构特性分析和预测营养需求。
基因组尺度代谢网络的图表示特性已经得到了广泛的研究。然而,这些网络的结构性质和功能性质之间的关系仍然非常不清楚。在本文中,我们将生物体的营养需求作为一种功能属性,并研究了代谢网络图表示与结构属性的关系。为了检验这种关系,我们研究了利用支持向量机从结构属性(度指数、边缘密度、聚类系数、度中心性、亲密中心性、中间中心性和特征向量中心性)预测营养需求的程度。此外,我们还研究了哪些特性对营养需求有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Docking-calculation-based method for predicting protein-RNA interactions. Sign: large-scale gene network estimation environment for high performance computing. Linear regression models predicting strength of transcriptional activity of promoters. Database for crude drugs and Kampo medicine. Mechanism of cell cycle disruption by multiple p53 pulses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1