Insertion of PETSc in the NEMO stack software driving NEMO towards exascale computing

L. D’Amore, A. Murli, V. Boccia, L. Carracciuolo
{"title":"Insertion of PETSc in the NEMO stack software driving NEMO towards exascale computing","authors":"L. D’Amore, A. Murli, V. Boccia, L. Carracciuolo","doi":"10.1109/HPCSim.2014.6903761","DOIUrl":null,"url":null,"abstract":"This paper addresses the scientific challenges related to high level implementation strategies which steer the NEMO (Nucleus for European Modelling of the Ocean) code toward the effective exploitation of the opportunities offered by exascale systems. We consider, as case studies, two components of the NEMO ocean model (OPA-Ocean PArallelization): the Sea Surface Height equation solver and the Variational Data Assimilation module. The advantages rising from the insertion of consolidated scientific libraries in the NEMO code are highlighted: such advantages concern both the “software quality” improvement (see the software quality parameters like robustness, portability, resilience, etc.) and the reduction of time spent for software development and maintenance. Finally, we consider the Shallow Water equations as a toy model for NEMO ocean model to show how the use of PETSc objects predisposes the application to gain a good level of scalability and efficiency when the most suitable level of abstraction is used.","PeriodicalId":6469,"journal":{"name":"2014 International Conference on High Performance Computing & Simulation (HPCS)","volume":"63 1","pages":"724-731"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCSim.2014.6903761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper addresses the scientific challenges related to high level implementation strategies which steer the NEMO (Nucleus for European Modelling of the Ocean) code toward the effective exploitation of the opportunities offered by exascale systems. We consider, as case studies, two components of the NEMO ocean model (OPA-Ocean PArallelization): the Sea Surface Height equation solver and the Variational Data Assimilation module. The advantages rising from the insertion of consolidated scientific libraries in the NEMO code are highlighted: such advantages concern both the “software quality” improvement (see the software quality parameters like robustness, portability, resilience, etc.) and the reduction of time spent for software development and maintenance. Finally, we consider the Shallow Water equations as a toy model for NEMO ocean model to show how the use of PETSc objects predisposes the application to gain a good level of scalability and efficiency when the most suitable level of abstraction is used.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在NEMO堆栈软件中插入PETSc,推动NEMO向百亿亿次计算方向发展
本文解决了与高级实施策略相关的科学挑战,这些策略引导NEMO(欧洲海洋建模核心)代码有效利用百亿亿级系统提供的机会。作为案例研究,我们考虑了NEMO海洋模式(OPA-Ocean PArallelization)的两个组成部分:海面高度方程求解器和变分数据同化模块。在NEMO代码中插入整合的科学库所带来的优势被强调了出来:这种优势涉及到“软件质量”的改进(参见软件质量参数,如健壮性、可移植性、弹性等)和减少用于软件开发和维护的时间。最后,我们将浅水方程视为NEMO海洋模型的玩具模型,以展示在使用最合适的抽象级别时,PETSc对象的使用如何使应用程序获得良好的可扩展性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AI4IO: A Suite of Ai-Based Tools for IO-Aware HPC Resource Management Improving Efficiency and Performance Through Faster Scheduling Mechanisms Towards an Integral System for Processing Big Graphs at Scale Advances in High Performance Computing - Results of the International Conference on "High Performance Computing", HPC 2019, Borovets, Bulgaria, September 2-6, 2019 Role of HPC in next-generation AI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1