Optimal balance of individual and collective in honeybee foraging

V. Tereshko
{"title":"Optimal balance of individual and collective in honeybee foraging","authors":"V. Tereshko","doi":"10.18500/0869-6632-003049","DOIUrl":null,"url":null,"abstract":"Purpose. Previously, we developed a minimal foraging model in a honey bee colony that is applicable to describe both the decision-making process and the phase transition between two behavioral modes of the colony, individual and collective. In this paper, we show that this model is also applicable to determine the optimal division of labor in the colony, namely, to determine the optimal proportions between different types of foragers, scouts and recruits. Model. We represent the steps in the foraging process as reactions of chemical kinetics, which leads to reaction–diffusion equations. The reaction part describes the dynamic modes of the foraging process: the recruitment of unemployed foragers to profitable food sources, that have become unprofitable as a result of their exploitation, and scouting. Diffusion describes the transfer of information in a honey bee colony. We assume almost perfect accuracy in the transmission and use of information about food sources in the colony, which is modeled by a very small diffusion coefficient of working foragers in the information space. On the contrary, the diffusion coefficient of unemployed foragers is chosen large to ensure their full mixing in the information space. This models the equal accessibility to transmitted information for all unemployed foragers in the hive. Results. We consider the profit of a colony on an exploited food source as the number of foragers working on that source, weighted by its value to the colony. It was found that with an increase in the intensity of scouting, the profit of the colony first grows, and then begins to fall, thus illustrating that there is an optimal balance of scouts and recruits, which ensures the greatest influx of food resources into the colony. Conclusion. An optimal division of labor in a honey bee colony, defining a dynamic balance between exploration and exploitation in a constantly changing environment, is essential to the survival of the colony. Considering that scouts use exclusively personal information, and recruits take advantage of social information, we can say that our model describes the optimal balance between the individual and the collective in the colony.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-003049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose. Previously, we developed a minimal foraging model in a honey bee colony that is applicable to describe both the decision-making process and the phase transition between two behavioral modes of the colony, individual and collective. In this paper, we show that this model is also applicable to determine the optimal division of labor in the colony, namely, to determine the optimal proportions between different types of foragers, scouts and recruits. Model. We represent the steps in the foraging process as reactions of chemical kinetics, which leads to reaction–diffusion equations. The reaction part describes the dynamic modes of the foraging process: the recruitment of unemployed foragers to profitable food sources, that have become unprofitable as a result of their exploitation, and scouting. Diffusion describes the transfer of information in a honey bee colony. We assume almost perfect accuracy in the transmission and use of information about food sources in the colony, which is modeled by a very small diffusion coefficient of working foragers in the information space. On the contrary, the diffusion coefficient of unemployed foragers is chosen large to ensure their full mixing in the information space. This models the equal accessibility to transmitted information for all unemployed foragers in the hive. Results. We consider the profit of a colony on an exploited food source as the number of foragers working on that source, weighted by its value to the colony. It was found that with an increase in the intensity of scouting, the profit of the colony first grows, and then begins to fall, thus illustrating that there is an optimal balance of scouts and recruits, which ensures the greatest influx of food resources into the colony. Conclusion. An optimal division of labor in a honey bee colony, defining a dynamic balance between exploration and exploitation in a constantly changing environment, is essential to the survival of the colony. Considering that scouts use exclusively personal information, and recruits take advantage of social information, we can say that our model describes the optimal balance between the individual and the collective in the colony.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蜜蜂觅食过程中个体与集体的最佳平衡
目的。在此之前,我们建立了一个最小的蜂群觅食模型,该模型既适用于描述决策过程,也适用于描述蜂群中个体和集体两种行为模式之间的相变。在本文中,我们证明了该模型也适用于确定群体的最优分工,即确定不同类型的觅食者、侦察员和新兵之间的最优比例。模型。我们将觅食过程的步骤表示为化学动力学的反应,从而得到反应-扩散方程。反应部分描述了觅食过程的动态模式:招募失业的觅食者到有利可图的食物来源,这些食物来源由于他们的剥削而变得无利可图,以及侦察。扩散是指信息在蜂群中的传递。我们假设在蚁群中食物来源信息的传递和使用几乎是完美的准确性,这是通过信息空间中工作觅食者的非常小的扩散系数来建模的。相反,选择较大的失业觅食者的扩散系数,以保证他们在信息空间中的充分混合。这个模型为蜂巢中所有失业的觅食者提供了获取传递信息的平等途径。结果。我们认为一个群体在被开采的食物来源上的利润是在该食物来源上工作的觅食者的数量,并根据其对群体的价值进行加权。研究发现,随着侦察强度的增加,蚁群的利润首先增长,然后开始下降,从而说明了侦察和新兵的最佳平衡,这确保了最大的食物资源流入蚁群。结论。在不断变化的环境中,蜜蜂群体的最佳分工是在探索和开发之间取得动态平衡,这对群体的生存至关重要。考虑到侦察兵只使用个人信息,而新兵利用社会信息,我们可以说我们的模型描述了群体中个体和集体之间的最佳平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
25.00%
发文量
47
期刊介绍: Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.
期刊最新文献
80 years of Vladislav A. Tsarev 70 years of Sergey V. Gonchenko 40 years of Ilya V. Sysoev To the 85th anniversary of Dmitry Ivanovich Trubetskov On the anniversary of Sergei A. Kashchenko
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1